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Preface
There are very few good Calculus books, written in English, available to the American reader. Only [Har], [Kla], [Apo],
[Olm], and [Spi] come to mind.

The situation in Precalculus is even worse, perhaps because Precalculus is a peculiar American animal: it is a review
course of all that which should have been learned in High School but was not. A distinctive American slang is thus called to
describe the situation with available Precalculus textbooks: they stink!

I have decided to write these notes with the purpose to, at least locally, for my own students, I could ameliorate this
situation and provide a semi-rigorous introduction to precalculus.

I try to follow a more or less historical approach. My goal is to not only present a coherent view of Precalculus, but also
to instill appreciation for some elementary results from Precalculus. Thus I do not consider a student (or for that matter, an
instructor) to be educated in Precalculus if he cannot demonstrate that

√
2 is irrational;1 that the equation of a non-vertical

line on the plane is of the form y= mx+ k, and conversely; that lines y= m1x+ k1 and y= m2x+ k2 are perpendicular if and
only if m1m2 =−1; that the curve with equation y= x2 is a parabola, etc.

I do not claim a 100% rate of success, or that I stick to the same paradigms each semester,2 but a great number of students
seem genuinely appreciative what I am trying to do.

I start with sets of real numbers, in particular, intervals. I try to make patent the distinction between rational and irrational
numbers, and their decimal representations. Usually the students reaching this level have been told fairy tales about

√
2 and π

being irrational. I prove the irrationality of the former using Hipassus of Metapontum’s proof.3

After sets on the line, I concentrate on distance on the line. Absolute values are a good place (in my opinion) to introduce
sign diagrams, which are a technique that will be exploited in other instances, as for example, in solving rational and absolute-
value inequalities.

The above programme is then raised to the plane. I derive the distance formula from the Pythagorean Theorem. It is
crucial, in my opinion, to make the students understand that these formulæ do not appear by fiat, but that are obtained from
previous concepts.

Depending on my mood, I either move to the definition of functions, or I continue to various curves. Let us say for the
sake of argument that I have chosen to continue with curves.

Once the distance formula is derived, it is trivial to talk about circles and semi-circles. The graph of y =
√
1− x2 is

obtained. This is the first instance of the translationGeometry-to-Algebra and Algebra-to-Geometry that the students see, that
is, they are able to tell what the equation of a given circle looks like, and vice-versa, to produce a circle from an equation.

Now, using similar triangles and the distance formula once again, I move on to lines, proving that the canonical equation
of a non-vertical line is of the form y = mx+ k and conversely. I also talk about parallel and normal lines, proving4 that two
non-vertical lines are perpendicular if and only if the product of their slopes is −1. In particular, the graph of y= x, y= −x,
and y= |x| are obtained.

The next curve we study is the parabola. First, I give the locus definition of a parabola. We use a T-square and a string in
order to illustrate the curve produced by the locus definition. It turns out to be a sort-of “U”-shaped curve. Then, using the
distance formula again, we prove that one special case of these parabolas has equation y= x2. The graph of x= y2 is obtained,
and from this the graph of y=

√
x.

Generally, after all this I give my first exam.

We now start with functions. A function is defined by means of the following five characteristics:
1Plato’s dictum comes to mind: “He does not deserve the appellative man who does not know that the diagonal of a square is inconmensurable with its

side.
2I don’t, in fact, I try to change emphases from year to year.
3I wonder how many of my colleagues know how to prove that π is irrational? Transcendental? Same for e, log2, cos1, etc. How many tales are the

students told for which the instructor does not know the proof?
4The Pythagorean Theorem once again!
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1. a set of inputs, called the domain of the function;

2. a set of all possible outputs, called the target set of the function;

3. a name for a typical input (colloquially referred to as the dummy variable);

4. a name for the function;

5. an assignment rule or formula that assigns to every element of the domain a unique element of the target set.

All these features are collapsed into the notation

f : Dom( f ) → Target( f )
x "→ f (x) .

Defining functions in such a careful manner is necessary. Most American books focus only on the assignment rule (formula),
but this makes a mess later on in abstract algebra, linear algebra, computer programming etc. For example, even though the
following four functions have the same formula, they are all different:

a : R → R
x "→ x2 ; b : [0;+∞[ → R

x "→ x2 ;

c : R → [0;+∞[
x "→ x2 ; d : [0;+∞[ → [0;+∞[

x "→ x2 ;

for a is neither injective nor surjective, b is injective but not surjective, c is surjective but not injective, and d is a bijection.

I first focus on the domain of the function. We study which possible sets of real numbers can be allowed so that the output
be a real number.

I then continue to graphs of functions and functions defined by graphs.5 At this point, of course, there are very functional
curves of which the students know the graphs: only x "→ x, x "→ |x|, x "→ x2, x "→

√
x, x "→

√
1− x2, piecewise combinations of

them, etc., but they certainly can graph a function with a finite (and extremely small domain). The repertoire is then extended
by considering the following transformations of a function f : x "→ − f (x), x "→ f (−x), x "→ V f (Hx+ h) + v, x "→ | f (x)|,
x "→ f (|x|), x "→ f (−|x|). These last two transformations lead a discussion about even and odd functions. The floor, ceiling,
and the decimal part functions are also now introduced.

The focus now turns to the assignment rule of the function, and is here where the algebra of functions (sum, difference,
product, quotient, composition) is presented. Students are taught the relationship between the various domains of the given
functions and the domains of the new functions obtained by the operations.

Composition leads to iteration, and iteration leads to inverse functions. The student now becomes familiar with the
concepts of injective, surjective, and bijective functions. The relationship between the graphs of a function and its inverse are
explored. It is now time for the second exam.

The distance formula is now powerless to produce the graph of more complicated functions. The concepts ofmonotonicity
and convexity of a function are now introduced. Power functions (with strictly positive integral exponents are now studied.
The global and local behaviour of them is studied, obtaining a catalogue of curves y= xn, n ∈ N.

After studying power functions, we now study polynomials. The study is strictly limited to polynomials whose splitting
field is R.6

We now study power functions whose exponent is a strictly negative integer. In particular, the graph of the curve xy= 1 is
deduced from the locus definition of the hyperbola. Studying the monotonicity and concavity of these functions, we obtain a
catalogue of curves y= x−n, n ∈ N.

5This last means, given a picture in R2 that passes the vertical line test, we derive its domain and image by looking at its shadow on the x and y axes.
6I used to make a brief incursion into some ancillary topics of the theory of equations, but this makes me digress too much from my plan of Algebra-

Geometry-Geometry-Algebra, and nowadays I am avoiding it. I have heard colleagues argue for Ruffini’s Theorem, solely to be used in one example of
Calculus I, the factorisation of a cubic or quartic polynomial in optimisation problems, but it seems hardly worth the deviation for only such an example.
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Rational functions are now introduced, but only those whose numerators and denominators are polynomials splitting in R.
The problem of graphing them is reduced to examining the local at the zeroes and poles, and their global behaviour.

I now introduce formulæ of the type x "→ x1/n, n∈Z\{0}, whose graphs I derived by means of inverse functions of x "→ xn,
n ∈ Z. This concludes the story of Precalculus I as I envision it, and it is time for the third exam, usually during the last week
of classes. A comprehensive final exam is given during final-exam week.

These notes are in constant state of revision. I would greatly appreciate comments, additions, exercises, figures, etc., in
order to help me enhance them.

David A. Santos



To the Student

These notes are provided for your benefit as an attempt to organise the salient points of the course. They are a very terse
account of the main ideas of the course, and are to be used mostly to refer to central definitions and theorems. The number of
examples is minimal. The motivation or informal ideas of looking at a certain topic, the ideas linking a topic with another, the
worked-out examples, etc., are given in class. Hence these notes are not a substitute to lectures: you must always attend to
lectures. The order of the notes may not necessarily be the order followed in the class.

There is a certain algebraic fluency that is necessary for a course at this level. These algebraic prerequisites would be
difficult to codify here, as they vary depending on class response and the topic lectured. If at any stage you stumble in
Algebra, seek help! I am here to help you!

Tutoring can sometimes help, but bear in mind that whoever tutors you may not be familiar with my conventions. Again, I
am here to help! On the same vein, other books may help, but the approach presented here is at times unorthodox and finding
alternative sources might be difficult.

Here are more recommendations:

• Read a section before class discussion, in particular, read the definitions.

• Class provides the informal discussion, and you will profit from the comments of your classmates, as well as gain
confidence by providing your insights and interpretations of a topic. Don’t be absent!

• I encourage you to form study groups and to discuss the assignments. Discuss among yourselves and help each other
but don’t be parasites! Plagiarising your classmates’ answers will only lead you to disaster!

• Once the lecture of a particular topic has been given, take a fresh look at the notes of the lecture topic.

• Try to understand a single example well, rather than ill-digest multiple examples.

• Start working on the distributed homework ahead of time.

• Ask questions during the lecture. There are two main types of questions that you are likely to ask.

1. Questions of Correction: Is that a minus sign there? If you think that, for example, I have missed out a minus
sign or wrote P where it should have been Q,7 then by all means, ask. No one likes to carry an error till line XLV
because the audience failed to point out an error on line I. Don’t wait till the end of the class to point out an error.
Do it when there is still time to correct it!

2. Questions of Understanding: I don’t get it! Admitting that you do not understand something is an act requiring
utmost courage. But if you don’t, it is likely that many others in the audience also don’t. On the same vein, if you
feel you can explain a point to an inquiring classmate, I will allow you time in the lecture to do so. The best way
to ask a question is something like: “How did you get from the second step to the third step?” or “What does it
mean to complete the square?” Asseverations like “I don’t understand” do not help me answer your queries. If I
consider that you are asking the same questions too many times, it may be that you need extra help, in which case
we will settle what to do outside the lecture.

• Don’t fall behind! The sequence of topics is closely interrelated, with one topic leading to another.

• You will need square-grid paper, a ruler (preferably a T-square), some needle thread, and a compass.

• The use of calculators is allowed, especially in the occasional lengthy calculations. However, when graphing, you will
need to provide algebraic/analytic/geometric support of your arguments. The questions on assignments and exams will
be posed in such a way that it will be of no advantage to have a graphing calculator.

• Presentation is critical. Clearly outline your ideas. When writing solutions, outline major steps and write in complete
sentences. As a guide, you may try to emulate the style presented in the scant examples furnished in these notes.

7My doctoral adviser used to say “I said A, I wrote B, I meant C and it should have been D!

viii
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Notation
∈ Belongs to.
'∈ Does not belong to.
∀ For all (Universal Quantifier).
∃ There exists (Existential Quantifier).
∅ Empty set.
P =⇒ Q P implies Q.
P⇔ Q P if and only if Q.
N The Natural Numbers {0,1,2,3, . . .}.
Z The Integers {. . . ,−3,−2,−1,0,1,2,3, . . .}.
Q The Rational Numbers.
R The Real Numbers.
C The Complex Numbers.
An The set of n-tuples {(a1,a2, . . . ,an)|ak ∈ A}.
]a;b[ The open finite interval {x ∈ R : a< x< b}.
[a;b] The closed interval {x ∈ R : a≤ x≤ b}.
]a;b] The semi-open interval {x ∈ R : a< x≤ b}.
[a;b[ The semi-closed interval {x ∈R : a≤ x< b}.
]a;+∞[ The infinite open interval {x ∈ R : x> a}.
]−∞;a] The infinite closed interval {x ∈ R : x≤ a}.
∑nk=1 ak The sum a1+a2+ · · ·+an−1+an.



1 The Line

This chapter introduces essential notation and terminology that will be used throughout these notes. The focus of this course
will be the real numbers, of which we assume the reader has passing familiarity. We will review some of the properties of real
numbers as a way of having a handy vocabulary that will be used for future reference.

1.1 Sets and Notation
1 Definition We will mean by a set a collection of well defined members or elements. A subset is a sub-collection of a set.
We denote that B is a subset of A by the notation B! A or sometimes B⊂ A.1

Some sets of numbers will be referred to so often that they warrant special notation. Here are some of the most common ones.
∅ Empty set.
N The Natural Numbers {0,1,2,3, . . .}.
Z The Integers {. . . ,−3,−2,−1,0,1,2,3, . . .}.
Q The Rational Numbers.
R The Real Numbers.
C The Complex Numbers.

! Observe that N⊆ Z⊆Q⊆ R⊆ C.

From time to time we will also use the following notation, borrowed from set theory and logic.
∈ Is in. Belongs to. Is an element of.
'∈ Is not in. Does not belong to. Is not an element of.
∀ For all (Universal Quantifier).
∃ There exists (Existential Quantifier).
P =⇒ Q P implies Q.
P⇔Q P if and only if Q.

2 Example −1 ∈ Z but 12 '∈ Z.

3 Definition Let A be a set. If a belongs to the set A, then we write a ∈ A, read “a is an element of A.” If a does not belong
to the set A, we write a '∈ A, read “a is not an element of A.” The set that has no elements, that is empty set, will be denoted by
∅.

There are various ways of alluding to a set. We may use a description, or we may list its elements individually.

4 Example The sets

A= {x ∈ Z : x2 ≤ 9}, B= {x ∈ Z : |x|≤ 3}, C = {−3,−2,−1,0,1,2,3}

are identical. The first set is the set of all integers whose square lies between 1 and 9 inclusive, which is precisely the second
set, which again is the third set.

5 Example Consider the set
A= {2,9,16, . . . ,716},

where the elements are in arithmetic progression. How many elements does it have? Is 401∈ A? Is 514∈ A? What is the sum
of the elements of A?

1There is no agreement relating the choice. Some use⊂ to denote strict containment, that is, A! B but A '= B. In the case when we want to denote strict
containment we will simply write A" B.

1



2 Chapter 1

Solution: " Observe that the elements have the form

2= 2+7 ·0, 9= 2+7 ·1, 16= 2+7 ·2, . . . ,

thus the general element term has the form 2+7n. Now,

2+7n= 716 =⇒ n= 102.

This means that there are 103 elements, since we started with n= 0.

If 2+7k= 401, then k = 57, so 401 ∈ A. On the other hand, 2+7a= 514 =⇒ a =
512
7
, which is not integral,

and hence 514 '∈ A.

To find the sum of the arithmetic progression we will use a trick due to the great German mathematician K. F.
Gauß who presumably discovered it when he was in first grade. To add the elements of A, put

S= 2+9+16+ · · ·+716.

Observe that the sum does not change if we sum it backwards, so

S = 716+709+702+ · · ·+16+9+2.

Adding both sums and grouping corresponding terms,

2S = (2+716)+ (9+709)+(16+702)+ · · ·+(702+16)+ (709+9)+(716+2)
= 718+718+718+ · · ·+718+718+718
= 718 ·103,

since there are 103 terms. We deduce that

S=
718 ·103

2
= 36977.

#

A B

Figure 1.1: A∪B

A B

Figure 1.2: A∩B

A B

Figure 1.3: A\B

We now define some operations with sets.

6 Definition The union of two sets A and B, is the set

A∪B= {x : (x ∈ A) or (x ∈ B)}.

This is read “A union B.” See figure 1.1.

The intersection of two sets A and B, is

A∩B= {x : (x ∈ A) and (x ∈ B)}.
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This is read “A intersection B.” See figure 1.2.

The difference of two sets A and B, is

A\B= {x : (x ∈ A) and (x '∈ B)}.

This is read “A set minus B.” See figure 1.3.

Interval Notation Set Notation Graphical Representation

[a;b] {x ∈R : a≤ x≤ b}2
a b

]a;b[ {x ∈R : a< x< b}
a b

[a;b[ {x ∈R : a≤ x< b}
a b

]a;b] {x ∈R : a< x≤ b}
a b

]a;+∞[ {x ∈R : x> a}
a +∞

[a;+∞[ {x ∈R : x≥ a}
a +∞

]−∞;b[ {x ∈R : x< b}
−∞ b

]−∞;b] {x ∈R : x≤ b}
−∞ b

]−∞;+∞[ R
−∞ +∞

Table 1.1: Intervals.

7 Example Let A= {1,2,3,4,5,6}, and B= {1,3,5,7,9}. Then

A∪B= {1,2,3,4,5,6,7,9}, A∩B= {1,3,5}, A\B= {2,4,6}, B\A= {7,9}.

8 Example Consider the sets of arithmetic progressions

A= {3,9,15, . . . ,681}, B= {9,14,19, . . . ,564}.

How many elements do they share, that is, how many elements does A∩B have?

Solution: " The members of A have common difference 6 and the members of B have common difference 5.
Since the least common multiple of 6 and 5 is 30, and 9 is the smallest element that A and B have in common,
every element in A∩B has the form 9+30k. We then need the largest k ∈N satisfying the inequality

9+30k≤ 564 =⇒ k ≤ 18.5,

and since k is integral, the largest value it can achieve is 18. Thus A∩B has 18+1= 19 elements, where we have
added 1 because we start with k = 0. In fact,

A∩B= {9,39,69, . . . ,549}.

#
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.

9 Definition An interval I is a subset of the real numbers with the following property: if s ∈ I and t ∈ I, and if s< x< t, then
x ∈ I. In other words, intervals are those subsets of real numbers with the property that every number between two elements is
also contained in the set. Since there are infinitely many decimals between two different real numbers, intervals with distinct
endpoints contain infinitely many members. Table 1.1 shews the various types of intervals.

Observe that we indicate that the endpoints are included by means of shading the dots at the endpoints and that the endpoints
are excluded by not shading the dots at the endpoints. 3

10 Example If A= [−10;2], B= ]−∞;1[, then

A∩B= [−10;1[, A∪B= ]−∞;2] , A\B= [1;2] , B\A= ]−∞;−10[.

11 Example Let A =
[

1−
√
3;1+

√
2
]

, B =
[ π
2 ;π

[

. By approximating the endpoints to three decimal places, we find 1−
√
3≈−0.732, 1+

√
2≈ 2.414, π2 ≈ 1.571, π ≈ 3.142. Thus

A∩B=
[π
2
;1+
√
2
]

, A∪B=
[

1−
√
3;π

[

, A\B=
[

1−
√
3;
π
2

[

, B\A=
]

1+
√
2;π

[

.

We conclude this section by defining some terms for future reference.

12 Definition Let a ∈ R. We say that the set Na ! R is a neighbourhood of a if there exists an open interval I centred at a
such that I ! Na. In other words, Na is a neighbourhood of a if there exists a δ > 0 such that ]a− δ ;a+ δ [ ! Na. This last
condition may be written in the form

{x ∈ R : |x−a|< δ} ! Na.

IfNa is a neighbourhood of a, then we say thatNa \{a} is a deleted neighbourhood of a.

This means thatNa is a neighbourhood of a if a has neighbours left and right.

13 Example The interval ]0;1[ is neighbourhood of all of its points. The interval [0;1], on the contrary, is a neighbourhood
of all of its points, with the exception of its endpoints 0 and 1, since 0 does not have left neighbours in the interval and 1 does
not have right neighbours on the interval.

aa− δ a+ δ

Figure 1.4: Neighbourhood of a.

aa− δ

Figure 1.5: Sinistral neighbourhood
of a.

a a+ δ

Figure 1.6: Dextral neighbourhood
of a.

We may now extend the definition of neighbourhood.

14 Definition Let a ∈ R. We say that the set V ! R is a dextral neighbourhood or right-hand neighbourhood of a if there
exists a δ > 0 such that [a;a+ δ [ ! V . We say that the set V ′ ! R is a sinistral neighbourhood or left-hand neighbourhood
of a if there exists a δ ′ > 0 such that ]a− δ ′;a] !V ′.

The following result will be used later.
3It may seem like a silly analogy, but think that in [a;b] the brackets are “arms” “hugging” a and b, but in ]a;b[ the “arms” are repulsed. “Hugging” is thus

equivalent to including the endpoint, and “repulsing” is equivalent to excluding the endpoint.
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15 Lemma Let (a,b) ∈ R2,a < b. Then every number of the form λa+(1−λ )b, λ ∈ [0;1] belongs to the interval [a;b].
Conversely, if x ∈ [a;b] then we can find a λ ∈ [0;1] such that x= λa+(1−λ )b.

Proof: Clearly λa+(1−λ )b= b+λ (a−b) and since a−b< 0,

b= b+0(a−b)≥ b+λ (a−b)≥ b+1(a−b)= a,

whence the first assertion follows.
Assume now that x ∈ [a;b]. Solve the equation x = λa+(1−λ )b for λ obtaining λ = x−b

b−a . All what remains to
prove is that 0≤ λ ≤ 1, but this is evident, as 0≤ x−b≤ b−a. This concludes the proof. ❑

Homework

1.1.1 Problem List all the elements of the set

{x ∈ Z : 1≤ x2 ≤ 100, x is divisible by 3}.

1.1.2 Problem Determine the set

{x ∈N : x2−x= 6}

explicitly.

1.1.3 Problem Determine all the fractions lying strictly between 2
and 3 that have denominator 6, that is, determine the set

{x ∈N : 2<
x
6

< 3}

explicitly.

1.1.4 Problem Let A = {a,b,c,d,e, f } and B = {a,e, i,o,u}. Find
A∪B, A∩B, A\B and B\A.

1.1.5 Problem Describe the following sets explicitly by either pro-
viding a list of their elements or an interval.

1. {x ∈ R : x3 = 8}

2. {x ∈ R : |x|3 = 8}
3. {x ∈ R : |x| =−8}

4. {x ∈ R : |x| < 4}

5. {x ∈ Z : |x| < 4}

6. {x ∈ R : |x| < 1}
7. {x ∈ Z : |x| < 1}

8. {x ∈ Z : x2002 < 0}

1.1.6 Problem Describe explicitly the set

{x ∈ Z : x< 0,1000 < x2 < 2003}

by listing its elements.

1.1.7 Problem The set S is formed according to the following rules:

1. 2 belongs to S;

2. if n is in S then n+5 is also in S;

3. if n is in S then 3n is also in S.
Find the largest integer in the set

{1,2,3, . . . ,2008}

that does not belong to S.

1.1.8 Problem Use the trick of Gauß to prove that

1+2+3+ · · ·+n=
n(n+1)
2

.

1.1.9 Problem Let C = ]−5;5[, D = ]−1;+∞[. Find C∩D, C∪D,
C \D, and D\C.

1.1.10 Problem Let C = ]−5;3[, D = [4;+∞[. Find C∩D, C∪D,
C \D, and D\C.

1.1.11 Problem Let C =
[

−1;−2+
√
3
[

, D =
[

−0.5;
√
2−1

]

.
FindC∩D, C∪D,C \D, and D\C.

1.1.12 Problem Consider 101 different points x1,x2, . . . ,x101 be-
longing to the interval [0;1[. Shew that there are at least two say
xi and x j, i '= j, such that

|xi−x j|≤
1
100

1.1.13 Problem (Dirichlet’s Approximation Theorem) Shew that
∀x ∈R, ∀N ∈ N,N > 1, ∃(h ∈N,k ∈ N) with 0< k ≤ N such that

∣
∣
∣
∣
x−

h
k

∣
∣
∣
∣
<

1
Nk

.

1.2 Rational Numbers and Irrational Numbers
Let us start by considering the strictly positive natural numbers. Primitive societies needed to count objects, say, their cows
or sheep. Though some societies, like the Yanomame indians in Brazil or members of the CCP English and Social Sciences
Department4 cannot count above 3, the need for counting is indisputable. In fact, many of these societies were able to make the

4Among these, many are Philosophers, who, though unsuccessful in finding their Philosopher’s Stone, have found renal calculi.
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following abstraction: add to a pile one pebble (or stone) for every sheep, in other words, they were able to make one-to-one
correspondences. In fact, the word Calculus comes from the Latin for “stone.”

Breaking an object into almost equal parts (that is, fractioning it) justifies the creation of the positive rational numbers.
In fact, most ancient societies did very well with just the strictly positive rational numbers. The problems of counting and of
counting broken pieces were solved completely with these numbers.

As societies became more and more sophisticated, the need for new numbers arose. For example, it is believed that the
introduction of negative quantities arose as an accounting problem in Ancient India. Fair enough, write +1 if you have a
rupee—or whatever unit that ancient accountant used—in your favour. Write −1 if you owe one rupee. Write 0 if you are
rupeeless.

Thus we have constructedN, Z andQ. InQ we have, so far, a very elegant system of numbers which allows us to perform
four arithmetic operations (addition, subtraction, multiplication, and division)5and that has the notion of “order”, which we
will discuss in a latter section. A formal definition of the rational numbers is the following.

16 Definition The set of rational numbersQ is the set of quotients of integers where a denominator 0 is not allowed. In other
words:

Q =
{a
b
: a ∈ Z,b ∈ Z,b '= 0

}

.

Notice also thatQ has the wonderful property of closure, meaning that if we add, subtract, multiply or divide any two rational
numbers (with the exclusion of division by 0), we obtain as a result a rational number, that is, we stay within the same set.

Since a=
a
1
, every integer is also a rational number, in other words,Z⊆Q. Notice that every finite decimal can be written

as a fraction, for example, we can write the decimal 3.14 as

3.14=
314
100

=
157
50

.

What about non-finite decimals? Can we write them as a fraction? The next example shews how to convert an infinitely
repeating decimal to fraction from.

17 Example Write the infinitely repeating decimal 0.345= 0.345454545 . . . as the quotient of two natural numbers.

Solution: " The trick is to obtain multiples of x= 0.345454545 . . . so that they have the same infinite tail, and
then subtract these tails, cancelling them out.6 So observe that

10x= 3.45454545 . . .;1000x= 345.454545 . . . =⇒ 1000x−10x= 342 =⇒ x=
342
990

=
19
55

.

#

By mimicking the above examples, the following should be clear: decimals whose decimal expansions terminate or repeat are
rational numbers. Since we are too cowardly to prove the next statement,7 we prefer to call it a

18 Fact Every rational number has a terminating or a repeating decimal expansion. Conversely, a real number with a ter-
minating or repeating decimal expansion must be a rational number. Moreover, a rational number has a terminating decimal
expansion if and only if its denominator is of the form 2m5n, where m and n are natural numbers.

From the above fact we can tell, without actually carrying out the long division, that say,
1

1024
=

1
210

has a terminating

decimal expansion, but that, say,
1
6
does not.

5 “Reeling and Writhing, of course, to begin with, ”the Mock Turtle replied, “and the different branches of Arithmetic–Ambition, Distraction, Uglification,
and Derision.”

6That this cancellation is meaningful depends on the concept of convergence, of which we may talk more later.
7The curious reader may find a proof in many a good number theory book, for example [HarWri]
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Is every real number a rational number? Enter the Pythagorean Society in the picture, whose founder, Pythagoras lived
582 to 500 BC. This loony sect of Greeks forbade their members to eat beans. But their lunacy went even farther. Rather than
studying numbers to solve everyday “real world problems”—as some misguided pedagogues insist—they tried to understand
the very essence of numbers, to study numbers in the abstract. At the beginning it seems that they thought that the “only
numbers” were rational numbers. But one of them, Hipassos of Metapontum, was able to prove that the length of hypotenuse
of a right triangle whose legs8 had unit length could not be expressed as the ratio of two integers and hence, it was irrational.

19 Theorem [Hipassos of Metapontum]
√
2 is irrational.

Proof: Assume there is s ∈Q such that s2 = 2. We can find integers m,n '= 0 such that s=
m
n
. The crucial part

of the argument is that we can choose m,n such that this fraction be in least terms, and hence, m,n cannot be
both even. Now, n2s2 = m2, that is 2n2 = m2. This means that m2 is even. But then m itself must be even, since
the product of two odd numbers is odd. Thus m= 2a for some non-zero integer a (since m '= 0). This means that
2n2 = (2a)2 = 4a2 =⇒ n2 = 2a2. This means once again that n is even. But then we have a contradiction, since
m and n were not both even. ❑

0 1 2-1-2

√
2

Figure 1.7: Theorem 19.

!The above theorem says that the set R \Q of irrational numbers is non-empty. This is one of the very first
theorems ever proved. It befits you, dear reader, if you want to be called mathematically literate, to know its proof.

Suppose that we knew that every strictly positive natural number has a unique factorisation into primes. Then if n is not a
perfect square we may deduce that, in general,

√
n is irrational. For, if

√
n were rational, there would exist two strictly positive

natural numbers a,b such that
√
n =

a
b
. This implies that na2 = b2. The dextral side of this equality has an even number of

prime factors, but the sinistral side does not, since n is not a perfect square. This contradicts unique factorisation, and so
√
n

must be irrational.

! From now on we will accept the result that
√
n is irrational whenever n is a positive non-square integer.

The shock caused to the other Pythagoreans by Hipassos’ result was so great (remember the Pythagoreans were a cult),
that they drowned him. Fortunately, mathematicians have matured since then and the task of burning people at the stake or
flying planes into skyscrapers has fallen into other hands.

20 Example Give examples, if at all possible, of the following.

1. the sum of two rational numbers giving an irrational number.

2. the sum of two irrationals giving an irrational number.

3. the sum of two irrationals giving a rational number.

4. the product of a rational and an irrational giving an irrational number.

5. the product of a rational and an irrational giving a rational number.

6. the product of two irrationals giving an irrational number.

7. the product of two irrationals giving a rational number.

Solution: "

8The appropriate word here is “cathetus.”
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1. This is impossible. The rational numbers are closed under addition and multiplication.
2. Take both numbers to be

√
2. Their sum is 2

√
2 which is also irrational.

3. Take one number to be
√
2 and the other −

√
2. Their sum is 0, which is rational.

4. take the rational number to be 1 and the irrational to be
√
2. Their product is 1 ·

√
2=
√
2.

5. Take the rational number to be 0 and the irrational to be
√
2. Their product is 0 ·

√
2= 0.

6. Take one irrational number to be
√
2 and the other to be

√
3. Their product is

√
2 ·
√
3=
√
6.

7. Take one irrational number to be
√
2 and the other to be

1√
2
. Their product is

√
2 ·

1√
2

= 1.

#

After the discovery that
√
2 was irrational, suspicion arose that there were other irrational numbers. In fact, Archimedes

suspected that π was irrational, a fact that wasn’t proved till the XIX-th Century by Lambert. The “irrationalities” of
√
2 and

π are of two entirely “different flavours,” but we will need several more years of mathematical study9 to even comprehend the
meaning of that assertion.

Irrational numbers, that is, the set R \Q, are those then having infinite non-repeating decimal expansions. Of course,
by simply “looking” at the decimal expansion of a number we can’t tell whether it is irrational or rational without having
more information. Your calculator probably gives about 9 decimal places when you try to compute

√
2, say, it says

√
2 ≈

1.414213562. What happens after the final 2 is the interesting question. Do we have a pattern or do we not?

21 Example We expect a number like
0.100100001000000001 . . .,

where there are 2,4,8,16, . . . zeroes between consecutive ones, to be irrational, since the gaps between successive 1’s keep
getting longer, and so the decimal does not repeat. For the same reason, the number

0.123456789101112 . . .,

which consists of enumerating all strictly positive natural numbers after the decimal point, is irrational. This number is known
as the Champernowne-Mahler number.

22 Example Prove that 4√2 is irrational.

Solution: " If 4√2 were rational, then there would be two non-zero natural numbers, a,b such that

4√2=
a
b

=⇒
√
2=

a2

b2
.

Since
a
b
is rational,

a2

b2
=
a
b
·
a
b
must also be rational. This says that

√
2 is rational, contradicting Theorem 19. #

Homework

1.2.1 Problem Write the infinitely repeating decimal 0.123 =
0.123123123 . . . as the quotient of two positive integers.

1.2.2 Problem Prove that
√
8 is irrational.

1.2.3 Problem Assuming that
√
6 is irrational, prove that

√
2+
√
3

must be irrational.

1.2.4 Problem Suppose that you are given a finite string of integers,

say, 12345. Can you find an irrational number whose first five deci-
mal digits after the decimal point are 12345?

1.2.5 Problem Find a rational number between the irrational num-
bers
√
2 and

√
3.

1.2.6 Problem Find an irrational number between the irrational
numbers

√
2 and

√
3.

9Or in the case of people in the English and the Social Sciences Departments, as many lifetimes as a cat.
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1.2.7 Problem Find an irrational number between the rational num- bers
1
10
and

1
9
.

1.3 Operations with Real Numbers
The set of real numbers is furnished with two operations+ (addition) and · (multiplication) that satisfy the following axioms.

23 Axiom (Closure)
x ∈ R and y ∈ R =⇒ x+ y ∈ R and xy ∈R.

This axiom tells us that if we add or multiply two real numbers, then we stay within the realm of real numbers. Notice that
this is not true of division, for, say, 1÷0 is the division of two real numbers, but 1÷0 is not a real number. This is also not
true of taking square roots, for, say,−1 is a real number but

√
−1 is not.

24 Axiom (Commutativity)

x ∈ R and y ∈ R =⇒ x+ y= y+ x and xy= yx.

This axiom tells us that order is immaterial when we add or multiply two real numbers. Observe that this axiom does not hold
for division, because, for example, 1÷2 '= 2÷1.

25 Axiom (Associativity)

x ∈ R,y ∈ R and z ∈R =⇒ x+(y+ z) = (x+ y)+ z and (xy)z= x(yz).

This axiom tells us that in a string of successive additions or multiplications, it is immaterial where we put the parentheses.
Observe that subtraction is not associative, since, for example, (1−1)−1 '= 1− (1−1).

26 Axiom (Additive and Multiplicative Identity) There exist two unique elements, 0 and 1, with 0 '= 1, such that ∀x ∈ R,

0+ x= x+0= x, and 1 · x= x ·1= x.

27 Axiom (Existence of Opposites and Inverses) For all x ∈ R ∃− x ∈ R, called the opposite of x, such that

x+(−x) = (−x)+ x= 0.

For all y ∈ R\{0} ∃y−1 ∈ R\{0}, called the multiplicative inverse of y, such that

y · y−1 = y−1 · y= 1.

In the axiom above, notice that 0 does not have a multiplicative inverse, that is, division by 0 is not allowed. Why? Let us for
a moment suppose that 0 had a multiplicative inverse, say 0−1. We will obtain a contradiction as follows. First, if we multiply
any real number by 0 we get 0, so, in particular, 0 · 0−1 = 0. Also, if we multiply a number by its multiplicative inverse we
should get 1, and hence, 0 ·0−1 = 1. This gives

0= 0 ·0−1 = 1,

in contradiction to the assumption that 0 '= 1.

28 Axiom (Distributive Law) For all real numbers x,y,z, there holds the equality

x · (y+ z) = x · y+ x · z.

! It is customary in Mathematics to express a product like x ·y by juxtaposition, that is, by writing together the
letters, as in xy, omitting the product symbol ·. From now on we will follow this custom.

The above axioms allow us to obtain various algebraic identities, of which we will demonstrate a few.
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29 Theorem (Difference of Squares Identity) For all real numbers a,b, there holds the identity

a2−b2 = (a−b)(a+b).

Proof: Using the distributive law twice,

(a−b)(a+b)= a(a+b)−b(a+b)= a2+ab−ba−b2= a2+ab−ab−b2= a2−b2.

❑

Here is an application of the above identity.

30 Example Given that 232−1 has exactly two divisors a and b satisfying the inequalities

50< a< b< 100,

find the product ab.

Solution: " We have

232−1 = (216−1)(216+1)

= (28−1)(28+1)(216+1)

= (24−1)(24+1)(28+1)(216+1)

= (22−1)(22+1)(24+1)(28+1)(216+1)

= (2−1)(2+1)(22+1)(24+1)(28+1)(216+1).

Since 28+1= 257, a and b must be part of the product

(2−1)(2+1)(22+1)(24+1) = 255= 3 ·5 ·17.

The only divisors of 255 in the desired range are 3 · 17 = 51 and 5 · 17 = 85, whence the desired product is
51 ·85= 4335. #

31 Theorem (Difference and Sum of Cubes) For all real numbers a,b, there holds the identity

a3−b3 = (a−b)(a2+ab+b2) and a3+b3 = (a+b)(a2−ab+b2).

Proof: Using the distributive law twice,

(a−b)(a2+ab+b2) = a(a2+ab+b2)−b(a2+ab+b2) = a3+a2b+ab2−ba2−ab2−b3 = a3−b3.

Also, replacing b by −b in the difference of cubes identity,

a3+b3 = a3− (−b)3 = (a− (−b))(a2+a(−b)+ (−b)2) = (a+b)(a2−ab+b2).

❑

Theorems 29 and 31 can be generalised as follows. Let n> 0 be an integer. Then for all real numbers x,y

xn− yn = (x− y)(xn−1+ xn−2y+ xn−3y2+ · · ·+ x2yn−3+ xyn−2+ yn−1). (1.1)

For example,

x5− y5 = (x− y)(x4+ x3y+ x2y2+ xy3+ y4), x5+ y5 = (x+ y)(x4− x3y+ x2y2− xy3+ y4).

See problem 1.3.17.
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32 Theorem (Perfect Squares Identity) For all real numbers a,b, there hold the identities

(a+b)2 = a2+2ab+b2 and (a−b)2 = a2−2ab+b2.

Proof: Expanding using the distributive law twice,

(a+b)2 = (a+b)(a+b)= a(a+b)+b(a+b)= a2+ab+ba+b2= a2+2ab+b2.

To obtain the second identity, replace b by−b in the just obtained identity:

(a−b)2 = (a+(−b))2 = a2+2a(−b)+ (−b)2 = a2−2ab+b2.

❑

33 Example The sum of two numbers is 7 and their product is 3. Find the sum of their squares and the sum of their cubes.

Solution: " Let the two numbers be a,b. Then a+b= 7 and ab= 3. Then

49= (a+b)2 = a2+2ab+b2 = a2+b2+6 =⇒ a2+b2 = 49−6= 43.

Also,
a3+b3 = (a+b)(a2+b2−ab) = (7)(43−3) = 280.

Thus the sum of their squares is 43 and the sum of their cubes is 280. #

x

x

+

a

= + =

Figure 1.8: Completing the square: x2+ax=
(

x+
a
2

)2
−
(a
2

)2
.

The following method, called Sophie Germain’s trick10 is useful to convert some expressions into differences of squares.

34 Example We have

x4+ x2+1 = x4+2x2+1− x2

= (x2+1)2− x2

= (x2+1− x)(x2+1+ x).

35 Example We have

x4+4 = x4+4x2+4−4x2

= (x2+2)2−4x2

= (x2+2−2x)(x2+2+2x).

10Sophie Germain (1776–1831) was an important French mathematician of the French Revolution. She pretended to be a man in order to study Math-
ematics. At the time, women were not allowed to matriculate at the École Polytechnique, but she posed as a M. Leblanc in order to obtain lessons from
Lagrange.
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Sophie Germain’s trick is often used in factoring quadratic trinomials, where it is often referred to as the technique of com-
pleting the square, which has the geometric interpretation given in figure 1.8. We will give some examples of factorisations
that we may also obtain with the trial an error method commonly taught in elementary algebra.

36 Example We have

x2−8x−9 = x2−8x+16−9−16

= (x−4)2−25

= (x−4)2−52

= (x−4−5)(x−4+5)

= (x−9)(x+1).

Here to complete the square, we looked at the coefficient of the linear term, which is −8, we divided by 2, obtaining−4, and
then squared, obtaining 16.

37 Example We have

x2+4x−117 = x2+4x+4−117−4

= (x+2)2−112

= (x+2−11)(x+2+11)

= (x−9)(x+13).

Here to complete the square, we looked at the coefficient of the linear term, which is 4, we divided by 2, obtaining 2, and then
squared, obtaining 4.

38 Example We have

a2+ab+b2 = a2+ab+
b2

4
−
b2

4
+b2 = a2+ab+

b2

4
+
3b2

4
=

(

a+
b
2

)2
+
3b2

4
.

Here to complete the square, we looked at the coefficient of the linear term (in a), which is b, we divided by 2, obtaining
b
2
,

and then squared, obtaining
b2

4
.

39 Example Factor 2x2+3x−8 into linear factors by completing squares.

Solution: " First, we force a 1 as coefficient of the square term:

2x2+3x−8= 2
(

x2+
3
2
x−4

)

.
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Then we look at the coefficient of the linear term, which is
3
2
. We divide it by 2, obtaining

3
4
, and square it,

obtaining
9
16
. Hence

2x2+3x−8 = 2
(

x2+
3
2
x−4

)

= 2
(

x2+
3
2
x+

9
16
−
9
16
−4

)

= 2

((

x+
3
2

)2
−
9
16
−4

)

= 2

((

x+
3
2

)2
−
73
16

)

= 2

(

x+
3
2
−
√
73
4

)(

x+
3
2

+

√
73
4

)

.

#

40 Theorem (Perfect Cubes Identity) For all real numbers a,b, there hold the identities

(a+b)3 = a3+3a2b+3ab2+b3 and (a−b)3 = a3−3a2b+3ab2−b3.

Proof: Expanding, using Theorem 32,

(a+b)3 = (a+b)(a+b)2

= (a+b)(a2+2ab+b2)

= a(a2+2ab+b2)+b(a2+2ab+b2)

= a3+2a2b+ab2+ba2+2ab2+b3

= a3+3a2b+3ab2+b3.

The second identity is obtained by replacing b with −b:

(a−b)3 = (a+(−b))3 = a2+3a2(−b)+3a(−b)2+(−b)3 = a3−3a2b+3ab2−b3.

❑

It is often convenient to rewrite the above identities as

(a+b)3 = a3+b3+3ab(a+b), (a−b)3 = a3−b3−3ab(a−b).

41 Example Redo example 33 using Theorem 40.

Solution: " Again, let the two numbers the two numbers a,b satisfy a+b= 7 and ab= 3. Then

343= 73 = (a+b)3 = a3+b3+3ab(a+b)= a3+b3+3(3)(7) =⇒ a3+b3 = 343−63= 280,

as before. #

The results of Theorems 32 and 40 generalise in various ways. In Appendix B we present the binomial theorem, which
provides the general expansion of (a+b)n when n is a positive integer.

Homework
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1.3.1 Problem Expand and collect like terms:
(
2
x

+
x
2

)2
−
(
2
x
−
x
2

)2
.

1.3.2 Problem Find all the real solutions to the system of equations

x+y= 1, xy=−2.

1.3.3 Problem Find all the real solutions to the system of equations

x3+y3 = 7, x+y= 1.

1.3.4 Problem Compute

12−22+32−42+ · · ·+992−1002.

1.3.5 Problem Let n ∈ N. Find all prime numbers of the form
n3−8.

1.3.6 Problem Compute 12345678902−1234567889 ·1234567891
mentally.

1.3.7 Problem The sum of two numbers is 3 and their product is 9.
What is the sum of their reciprocals?

1.3.8 Problem Given that

1, 000, 002, 000, 001

has a prime factor greater than 9000, find it.

1.3.9 Problem Let a,b,c be arbitrary real numbers. Prove that

(a+b+c)2 = a2+b2+c2+2(ab+bc+ca).

1.3.10 Problem Let a,b,c be arbitrary real numbers. Prove that

a3+b3+c3−3abc = (a+b+c)(a2 +b2+c2−ab−bc−ca).

1.3.11 Problem The numbers a,b,c satisfy

a+b+c =−6, ab+bc+ca = 2, a3+b3+c3 = 6.

Find abc.

1.3.12 Problem Compute
√

(1000000)(1000001)(1000002)(1000003)+1

without a calculator.

1.3.13 Problem Find two positive integers a,b such that
√

5+2
√
6=
√
a+
√
b.

1.3.14 Problem If a,b,c,d, are real numbers such that

a2+b2+c2+d2 = ab+bc+cd+da,

prove that a= b= c= d.

1.3.15 Problem Find all real solutions to the equation

(x+y)2 = (x−1)(y+1).

1.3.16 Problem Let a,b,c be real numbers with a+b+c= 0. Prove
that

a2+b2

a+b
+
b2+c2

b+c
+
c2+a2

c+a
=
a3

bc
+
b3

ca
+
c3

ab
.

1.3.17 Problem Prove that if a ∈R, a '= 1 and n ∈N\{0}, then

1+a+a2 + · · ·an−1 =
1−an

1−a
. (1.2)

Then deduce that if n is a strictly positive integer, it follows

xn−yn = (x−y)(xn−1+xn−2y+ · · ·+xyn−2+yn−1).

1.3.18 Problem Prove that the product of two sums of squares is a
sum of squares. That is, let a,b,c,d be integers. Prove that you can
find integers A,B such that

(a2+b2)(c2+d2) = A2+B2.

1.3.19 Problem Prove that if a,b,c are real numbers, then

(a+b+c)3 −3(a+b)(b+c)(c+a) = a3+b3+c3.

1.3.20 Problem If a,b,c are real numbers, prove that a5 + b5 + c5
equals

(a+b+c)5−5(a+b)(b+c)(c+a)(a2 +b2+c2+ab+bc+ca).

1.4 Order on the Line

!
Vocabulary Alert! We will call a number x positive if x ≥ 0 and strictly positive if x > 0. Similarly,
we will call a number y negative if y ≤ 0 and strictly negative if y < 0. This usage differs from most
Anglo-American books, who prefer such terms as non-negative and non-positive.

The set of real numbers R is also endowed with a relation> which satisfies the following axioms.
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42 Axiom (Trichotomy Law) For all real numbers x,y exactly one of the following holds:

x> y, x= y, or y> x.

43 Axiom (Transitivity of Order) For all real numbers x,y,z,

if x> y and y> z then x> z.

44 Axiom (Preservation of Inequalities by Addition) For all real numbers x,y,z,

if x> y then x+ z> y+ z.

45 Axiom (Preservation of Inequalities by Positive Factors) For all real numbers x,y,z,

if x> y and z> 0 then xz> yz.

46 Axiom (Inversion of Inequalities by Negative Factors) For all real numbers x,y,z,

if x> y and z< 0 then xz< yz.

! x< y means that y> x. x≤ y means that either y> x or y= x, etc.

The above axioms allow us to solve several inequality problems.

47 Example Solve the inequality
2x−3<−13.

Solution: " We have
2x−3<−13 =⇒ 2x<−13+3 =⇒ 2x<−10.

The next step would be to divide both sides by 2. Since 2> 0, the sense of the inequality is preserved, whence

2x<−10 =⇒ x<
−10
2

=⇒ x<−5.

#

48 Example Solve the inequality
−2x−3≤−13.

Solution: " We have
−2x−3≤−13 =⇒ −2x≤−13+3 =⇒ −2x≤−10.

The next step would be to divide both sides by−2. Since−2< 0, the sense of the inequality is inverted, and so

−2x≤−10 =⇒ x≥
−10
−2

=⇒ x≥−5.

#

The method above can be generalised for the case of a product of linear factors. To investigate the set on the line where
the inequality

(a1x+b1) · · · (anx+bn) > 0, (1.3)

holds, we examine each individual factor. By trichotomy, for every k, the real line will be split into the three distinct zones

{x ∈ R : akx+bk > 0}∪{x ∈R : akx+bk = 0}∪{x ∈ R : akx+bk < 0}.

We will call the real line with punctures at x = −
ak
bk
and indicating where each factor changes sign the sign diagram corre-

sponding to the inequality (1.3).
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49 Example Consider the inequality
x2+2x−35< 0.

1. Form a sign diagram for this inequality.

2. Write the set {x ∈ R : x2+2x−35< 0} as an interval or as a union of intervals.

3. Write the set
{

x ∈ R : x2+2x−35≥ 0
}

as an interval or as a union of intervals.

4. Write the set
{

x ∈ R :
x+7
x−5

≥ 0
}

as an interval or as a union of intervals.

5. Write the set
{

x ∈ R :
x+7
x−5

≤−2
}

as an interval or as a union of intervals.

Solution: "

1. Observe that x2+2x−35= (x−5)(x+7), which vanishes when x=−7 or when x= 5. In neighbourhoods
of x=−7 and of x= 5, we find:

x ∈ ]−∞;−7[ ]−7;5[ ]5;+∞[

x+7 − + +

x−5 − − +

(x+7)(x−5) + − +

On the last row, the sign of the product (x+7)(x−5) is determined by the sign of each of the factors x+7
and x−5.

2. From the sign diagram above we see that

{x ∈R : x2+2x−35< 0} = ]−7;5[ .

3. From the sign diagram above we see that
{

x ∈R : x2+2x−35≥ 0
}

= ]−∞;−7]∪ [5;+∞[ .

Notice that we include both x=−7 and x= 5 in the set, as (x+7)(x−5) vanishes there.
4. From the sign diagram above we see that

{

x ∈ R :
x+7
x−5

≥ 0
}

= ]−∞;−7]∪ ]5;+∞[ .

Notice that we include x=−7 since
x+7
x−5

vanishes there, but we do not include x= 5 since there the fraction
x+7
x−5

would be undefined.

5. We must add fractions:

x+7
x−5

≤−2 ⇐⇒
x+7
x−5

+2≤ 0 ⇐⇒
x+7
x−5

+
2x−10
x−5

≤ 0 ⇐⇒
3x−3
x−5

≤ 0.

We must now construct a sign diagram puncturing the line at x= 1 and x= 5:

x ∈ ]−∞;1[ ]1;5[ ]5;+∞[

3x−3 − + +

x−5 − − +

3x−3
x−5

+ − +
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We deduce that {

x ∈ R :
x+7
x−5

≤−2
}

= [1;5[ .

Notice that we include x = 1 since
3x−3
x−5

vanishes there, but we exclude x = 5 since there the fraction
3x−3
x−5

is undefined.

#

50 Example Determine the following set explicitly: {x ∈ R :−x2+2x−2≥ 0}.

Solution: " The equation −x2 + 2x− 2 = 0 does not have rational roots. To find its roots we either use the
quadratic formula, or we may complete squares. We will use the latter method:

−x2+2x−2=−(x2−2x)−2=−(x2−2x+1)−2+1=−(x−1)2−1.

Therefore,
−x2+2x−2≥ 0 ⇐⇒ −(x−1)2−1≥ 0 ⇐⇒ −((x−1)2+1)≥ 0.

This last inequality is impossible for real numbers, as the expression −((x−1)2+1) is strictly negative. Hence,

{x ∈ R :−x2+2x−2≥ 0} = ∅.

Aliter: The discriminant of−x2+2x−2 is 22−4(−1)(−2)=−4< 0, which means that the equation has complex
roots. Hence the quadratic polynomial keeps the sign of its leading coefficient, −1, and so it is always negative.
#

51 Example Determine explicitly the set {x ∈R : 32x2−40x+9> 0}.

Solution: " The equation 32x2− 40x+ 9= 0 does not have rational roots. To find its roots we will complete
squares:

32x2−40x+9 = 32
(

x2−
5
4
x+

9
32

)

= 32
(

x2−
5
4
x+

52

82
+
9
32
−
52

82

)

= 32

(
(

x−
5
8

)2
−
7
64

)

= 32

(

x−
5
8
−
√
7
8

)(

x−
5
8

+

√
7
8

)

.

We may now form a sign diagram, puncturing the line at x=
5
8
−
√
7
8

and at x=
5
8

+

√
7
8
:

x ∈

]

−∞;
5
8
−
√
7
8

[ ]

5
8
−
√
7
8
;
5
8

+

√
7
8

[ ]

5
8

+

√
7
8
;+∞

[

(

x−
5
8

+

√
7
8

)

− + +
(

x−
5
8
−
√
7
8

)

− − +

(

x−
5
8

+

√
7
8

)(

x−
5
8
−
√
7
8

)

+ − +

We deduce that
{

x ∈ R : 32x2−40x+9> 0
}

=

]

−∞;
5
8
−
√
7
8

[

∪

]

5
8

+

√
7
8
;+∞

[

.

#



18 Chapter 1

Care must be taken when transforming an inequality, as a given transformation may introduce spurious solutions.

52 Example Solve the inequality
2
√
1− x−

√
x+1≥

√
x.

Solution: " For the square roots to make sense, we must have

x ∈ ]−∞;1]∩ [−1;+∞[∩ [0;+∞[ =⇒ x ∈ [0;1] .

Squaring both sides of the inequality, transposing, and then squaring again,

4(1−x)−4
√

1− x2+x+1> x =⇒ 5−4x> 4
√

1− x2 =⇒ 25−40x+16x2> 16−16x2 =⇒ 32x2−40x+9> 0.

This last inequality has already been solved in example 51. Thus we want the intersection
(]

−∞;
5
8
−
√
7
8

[

∪

]

5
8

+

√
7
8
;+∞

[)

∩ [0;1] =

[

0;
5
8
−
√
7
8

[

.

#

Homework

1.4.1 Problem Consider the set

{x ∈ R : x2−x−6 ≤ 0}.

1. Draw a sign diagram for this set.
2. Using the obtained sign diagram, write the set

{x ∈ R : x2−x−6≤ 0}

as an interval or as a union of intervals.
3. Using the obtained sign diagram, write the set

{

x ∈R :
x−3
x+2

≥ 0
}

as an interval or as a union of intervals.

1.4.2 Problem Write the set
{

x ∈R :
x2+x−6
x2−x−6

≥ 0
}

as an interval or as a union of intervals.

1.4.3 Problem Give an explicit description of the set

{x ∈ R : x2−x−4 ≥ 0}.

1.4.4 Problem Write the set
{

x ∈ R : x2−x−6≤ 0
}

∩
{

x ∈R :
1−x
x+3

≥ 1
}

in interval notation.

1.4.5 Problem Solve the inequality
√
x2−4x+3 ≥−x+2.

1.4.6 Problem Solve the inequality
1−
√
1−4x2
x

>
1
2
.

1.4.7 Problem Solve the inequality
√
2x+1+

√
2x−5≥

√
5−2x.

1.4.8 Problem Find the least positive integer n satisfying the in-
equality

√
n+1−

√
n<

1
10

.

1.4.9 Problem Determine the values of the real parameter t such
that the set

At =
{

x ∈ R : (t−1)x2+ tx+
t
4

= 0
}

1. be empty;
2. have exactly one element;
3. have exactly two elements.

1.4.10 Problem List the elements of the set
{

x ∈ Z : min
(

x+2,4−
x
3

)

≥ 1
}

.

1.4.11 Problem Demonstrate that for all real numbers x > 0 it is
verified that

2x3−6x2+
11
2
x+1> 0.

1.4.12 Problem Demonstrate that for all real numbers x it is verified
that

x8−x5+x2−x+1> 0.

1.4.13 Problem The values of a,b,c, and d are 1,2,3 and 4 but
not necessarily in that order. What is the largest possible value of
ab+bc+cd+da?

1.4.14 Problem Prove that if r ≥ s≥ t then

r2− s2+ t2 ≥ (r− s+ t)2.
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1.5 Absolute Value
We start with a definition.

53 Definition Let x ∈ R. The absolute value of x—denoted by |x|—is defined by

|x| =











−x if x< 0,

x if x≥ 0.

The absolute value of a real number is thus the distance of that real number to 0, and hence |x− y| is the distance between x
and y on the real line. The absolute value of a quantity is either the quantity itself or its opposite.

54 Example Write without absolute value signs:

1. |
√
3−2|,

2. |
√
7−
√
5|,

3. ||
√
7−
√
5|− |

√
3−2||

Solution: " We have

1. since 2> 1.74>
√
3, we have |

√
3−2|= 2−

√
3.

2. since
√
7>
√
5, we have |

√
7−
√
5| =
√
7−
√
5.

3. by virtue of the above calculations,

||
√
7−
√
5|− |

√
3−2||= |

√
7−
√
5− (2−

√
3)| = |

√
7+
√
3−
√
5−2|.

The question we must now answer is whether
√
7+
√
3>
√
5+2. But

√
7+
√
3> 4.38>

√
5+2 and hence

|
√
7+
√
3−
√
5−2|=

√
7+
√
3−
√
5−2.

#

55 Example Let x> 10. Write |3− |5− x||without absolute values.

Solution: " We know that |5− x|= 5− x if 5− x≥ 0 or that |5− x|=−(5− x) if 5− x< 0. As x> 10, we have
then |5− x|= x−5. Therefore

|3− |5− x||= |3− (x−5)|= |8− x|.

In the same manner , either |8− x|= 8− x if 8− x≥ 0 or |8− x|=−(8− x) if 8− x< 0. As x> 10, we have then
|8− x|= x−8. We conclude that x> 10,

|3− |5− x||= x−8.

#

The method of sign diagrams from the preceding section is also useful when considering expressions involving absolute
values.

56 Example Find all real solutions to |x+1|+ |x+2|− |x−3|= 5.

Solution: " The vanishing points for the absolute value terms are x=−1, x=−2 and x= 3. Notice that these
are the points where the absolute value terms change sign. We decompose R into (overlapping) intervals with
endpoints at the places where each of the expressions in absolute values vanish. Thus we have

R =]−∞;−2] ∪ [−2;−1] ∪ [−1;3] ∪ [3;+∞[.
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We examine the sign diagram

x ∈ ]−∞;−2] [−2;−1] [−1;3] [3;+∞[

|x+2|= −x−2 x+2 x+2 x+2

|x+1|= −x−1 −x−1 x+1 x+1

|x−3|= −x+3 −x+3 −x+3 x−3

|x+2|+ |x+1|− |x−3|= −x−6 x−2 3x x+6

Thus on ]−∞;−2] we need−x−6= 5 from where x=−11. On [−2;−1] we need x−2= 5 meaning that x= 7.

Since 7 '∈ [−2;−1], this solution is spurious. On [−1;3] we need 3x = 5, and so x =
5
3
. On [3;+∞[ we need

x+6= 5, giving the spurious solution x=−1. Upon assembling all this, the solution set is
{

−11,
5
3

}

.

#

We will now demonstrate two useful theorems for dealing with inequalities involving absolute values.

57 Theorem Let t ≥ 0. Then
|x|≤ t ⇐⇒ −t ≤ x≤ t.

Proof: Either |x| = x, or |x| =−x.
If |x| = x,

|x|≤ t ⇐⇒ x≤ t ⇐⇒ −t ≤ 0≤ x≤ t.

If |x| =−x,
|x|≤ t ⇐⇒ −x≤ t ⇐⇒ −t ≤ x≤ 0≤ t.

❑

58 Example Solve the inequality |2x−1|≤ 1.

Solution: " From theorem 57,

|2x−1|≤ 1 ⇐⇒ −1≤ 2x−1≤ 1 ⇐⇒ 0≤ 2x≤ 2 ⇐⇒ 0≤ x≤ 1 ⇐⇒ x ∈ [0;1] .

The solution set is the interval [0;1]. #

59 Theorem Let t ≥ 0. Then
|x|≥ t ⇐⇒ x≥ t or x≤−t.

Proof: Either |x| = x, or |x| =−x.
If |x| = x,

|x|≥ t ⇐⇒ x≥ t.

If |x| =−x,
|x|≥ t ⇐⇒ −x≥ t ⇐⇒ x≤−t.

❑

60 Example Solve the inequality |3+2x|≥ 1.
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Solution: " From theorem 59 ,

|3+2x|≥ 1 =⇒ 3+2x≥ 1 or 3+2x≤−1 =⇒ x≥−1 or x≤−2.

The solution set is the union of intervals ]−∞;−2]∪ [−1;+∞[. #

61 Example Solve the inequality |1− |1− x||≥ 1.

Solution: " We have

|1− |1− x||≥ 1 ⇐⇒ 1− |1− x|≥ 1 or 1− |1− x|≤−1.

Solving the first inequality,
1− |1− x|≥ 1 ⇐⇒ −|1− x|≥ 0 =⇒ x= 1,

since the quantity−|1− x| is always negative.
Solving the second inequality,

1− |1−x|≤−1⇐⇒ −|1−x|≤−2⇐⇒ |1−x|≥ 2 ⇐⇒ 1−x≥ 2 or 1−x≤−2 =⇒ x∈ [3;+∞[∪]−∞;−1]

and thus

{x ∈R : |1− |1− x||≥ 1} = ]−∞;−1]∪{1}∪ [3;+∞[ .

#

We conclude this section with a classical inequality involving absolute values.

62 Theorem (Triangle Inequality) Let a,b be real numbers. Then

|a+b|≤ |a|+ |b|. (1.4)

Proof: Since clearly −|a|≤ a≤ |a| and −|b|≤ b≤ |b|, from Theorem 57, by addition,

−|a|≤ a≤ |a|

to
−|b|≤ b≤ |b|

we obtain
−(|a|+ |b|)≤ a+b≤ (|a|+ |b|),

whence the theorem follows. ❑

63 Corollary Let a,b be real numbers. Then
||a|− |b||≤ |a−b| . (1.5)

Proof: We have
|a| = |a−b+b|≤ |a−b|+ |b|,

giving
|a|− |b|≤ |a−b|.

Similarly,
|b| = |b−a+a|≤ |b−a|+ |a|= |a−b|+ |a|,

gives
|b|− |a|≤ |a−b|.

The stated inequality follows from this. ❑

Homework
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1.5.1 Problem Write without absolute values: |
√
3−

√

|2−
√
15| |

1.5.2 Problem Write without absolute values if x> 2: |x− |1−2x||.

1.5.3 Problem If x<−2 prove that |1− |1+x|| =−2−x.

1.5.4 Problem Let a,b be real numbers. Prove that |ab| = |a||b|.

1.5.5 Problem Let a ∈R. Prove that
√
a2 = |a|.

1.5.6 Problem Let a ∈R. Prove that a2 = |a|2 = |a2|.

1.5.7 Problem Solve the inequality |1−2x| < 3.

1.5.8 Problem How many real solutions are there to the equation

|x2−4x| = 3 ?

1.5.9 Problem Solve the following absolute value equations:

1. |x−3|+ |x+2| = 3,

2. |x−3|+ |x+2| = 5,

3. |x−3|+ |x+2| = 7.

1.5.10 Problem Find all the real solutions of the equation

x2−2|x+1|−2 = 0.

1.5.11 Problem Find all the real solutions to |5x−2| = |2x+1|.

1.5.12 Problem Find all real solutions to |x−2|+ |x−3| = 1.

1.5.13 Problem Find the set of solutions to the equation

|x|+ |x−1| = 2.

1.5.14 Problem Find the solution set to the equation

|x|+ |x−1| = 1.

1.5.15 Problem Find the solution set to the equation

|2x|+ |x−1|−3|x+2| = 1.

1.5.16 Problem Find the solution set to the equation

|2x|+ |x−1|−3|x+2| =−7.

1.5.17 Problem Find the solution set to the equation

|2x|+ |x−1|−3|x+2| = 7.

1.5.18 Problem If x< 0 prove that
∣
∣
∣x−

√

(x−1)2
∣
∣
∣= 1−2x.

1.5.19 Problem Find the real solutions, if any, to |x2−3x| = 2.

1.5.20 Problem Find the real solutions, if any, to x2−2|x|+1 = 0.

1.5.21 Problem Find the real solutions, if any, to x2− |x|−6 = 0.

1.5.22 Problem Find the real solutions, if any, to x2 = |5x−6|.

1.5.23 Problem Prove that if x ≤ −3, then |x+ 3|− |x− 4| is con-
stant.

1.5.24 Problem Solve the equation
∣
∣
∣
∣

2x
x−1

∣
∣
∣
∣
= |x+1|.

1.5.25 Problem Write the set

{x ∈R : |x+1|− |x−2| =−3}

in interval notation.

1.5.26 Problem Let x,y real numbers. Demonstrate that the maxi-
mum and the minimum of x and y are given by

max(x,y) =
x+y+ |x−y|

2

and
min(x,y) =

x+y− |x−y|
2

.

1.5.27 Problem Solve the inequality |x−1||x+2| > 4.

1.5.28 Problem Solve the inequality
|2x2−1|
x2−x−2

>
1
2
.

1.6 Completeness Axiom
The alert reader may have noticed that the smaller set of rational numbers satisfies all the arithmetic axioms and order axioms
of the real numbers given in the preceding sections. Why then, do we need the larger set R? In this section we will present an
axiom that characterises the real numbers.

64 Definition A number u is an upper bound for a set of numbers A if for all a ∈ A we have a ≤ u. The smallest such upper
bound is called the supremum of the set A. Similarly, a number l is a lower bound for a set of numbers B if for all b ∈ B we
have l ≤ b. The largest such lower bound is called the infimum of the set B.
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The real numbers have the following property, which further distinguishes them from the rational numbers.

65 Axiom (Completeness of R) Any set of real numbers which is bounded above has a supremum. Any set of real numbers
which is bounded below has a infimum.

0 1 2 3 4 5 6 7-1-2-3-4-5-6-7

+∞−∞

Figure 1.9: The Real Line.

Observe that the rational numbers are not complete. For example, there is no largest rational number in the set

{x ∈Q : x2 < 2}

since
√
2 is irrational and for any good rational approximation to

√
2 we can always find a better one.

Geometrically, each real number can be viewed as a point on a straight line. We make the convention that we orient the
real line with 0 as the origin, the positive numbers increasing towards the right from 0 and the negative numbers decreasing
towards the left of 0, as in figure 1.9. The Completeness Axiom says, essentially, that this line has no “holes.”

We append the object+∞, which is larger than any real number, and the object−∞, which is smaller than any real number.
Letting x ∈R, we make the following conventions.

(+∞)+ (+∞) = +∞ (1.6)

(−∞)+ (−∞) =−∞ (1.7)

x+(+∞) = +∞ (1.8)

x+(−∞) =−∞ (1.9)

x(+∞) = +∞ if x> 0 (1.10)

x(+∞) =−∞ if x< 0 (1.11)

x(−∞) =−∞ if x> 0 (1.12)

x(−∞) = +∞ if x< 0 (1.13)

x
±∞

= 0 (1.14)

Observe that we leave the following undefined:

±∞
±∞

, (+∞)+ (−∞), 0(±∞).



2 The Plane

2.1 Sets on the Plane
66 Definition Let A,B, be subsets of real numbers. Their Cartesian Product A×B is defined and denoted by

A×B= {(a,b) : a ∈ A,b ∈ B},

that is, the set of all ordered pairs whose elements belong to the given sets.

! In the particular case when A= B we write

A×A= A2.

67 Example If A= {−1,−2} and B= {−1,2} then

A×B= {(−1,−1),(−1,2),(−2,−1),(−2,2))},

B×A= {(−1,−1),(−1,−2),(2,−1),(2,−2)},

A2 = {(−1,−1),(−1,−2),(−2,−1),(−2,−2)},

B2 = {(−1,−1),(−1,2),(2,−1),(2,2)}.

Notice that these sets are all different, even though some elements are shared.

68 Example (−1,2) ∈ Z2 but (−1,
√
2) '∈ Z2.

69 Example (−1,
√
2) ∈ Z×R but (−1,

√
2) '∈ R×Z.

70 Definition R2 = R×R—the real Cartesian Plane—- is the set of all ordered pairs (x,y) of real numbers.

We represent the elements of R2 graphically as follows. Intersect perpendicularly two copies of the real number line. These
two lines are the axes. Their point of intersection—which we labelO= (0,0)— is the origin. To each point P on the plane we
associate an ordered pair P = (x,y) of real numbers. Here x is the abscissa1, which measures the horizontal distance of our
point to the origin, and y is the ordinate, which measures the vertical distance of our point to the origin. The points x and y
are the coordinates of P. This manner of dividing the plane and labelling its points is called the Cartesian coordinate system.
The horizontal axis is called the x-axis and the vertical axis is called the y-axis. It is therefore sufficient to have two numbers
x and y to completely characterise the position of a point P= (x,y) on the plane R2.

71 Definition Let a ∈ R be a constant. The set

{(x,y) ∈ R2 : x= a}

is a vertical line.

72 Definition Let b ∈ R be a constant. The set

{(x,y) ∈ R2 : y= b}

is a horizontal line.
1From the Latin linea abscissa or line cut-off.

24
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Figures 2.1 and 2.2 give examples of vertical and horizontal lines.

Figure 2.1: Line x= 3. Figure 2.2: Line y=−1.

1

2

3

4

-1

-2

-3

-4

1 2 3 4-1-2-3-4

Figure 2.3: Example 74.

1

2

3

4

-1

-2

-3

-4

1 2 3 4-1-2-3-4

Figure 2.4: Example 75
.

73 Example Draw the Cartesian product of intervals

R = ]1;3[× ]2;4[ = {(x,y) ∈R2 : 1< x< 3, 2< y< 4}.

Solution: " The set is bounded on the left by the vertical line x = 1 and bounded on the right by the vertical
line x= 3, excluding the lines themselves. The set is bounded above by the horizontal line y= 4 and below by the
horizontal line y= 2, excluding the lines themselves. The set is thus a square minus its boundary, as in figure 2.3.
#

74 Example Sketch the region
R = {(x,y) ∈ R2 : 1< x< 3, 2< y< 4}.

Solution: " The region is a square, excluding its boundary. The graph is shewn in figure 2.3, where we have
dashed the boundary lines in order to represent their exclusion. #

75 Example The region
R = [1;3] × [−3;+∞[

is the infinite half strip on the plane sketched in figure 2.4. The boundary lines are solid, to indicate their inclusion. The upper
boundary line is toothed, to indicate that it continues to infinity.

76 Example A quadrilateral has vertices at A = (5,−9),B = (2,3), C = (0,2), and D = (−8,4). Find the area, in square
units, of quadrilateral ABCD.

Solution: " Enclose quadrilateral ABCD in right6AED, and draw lines parallel to the y-axis in order to form
trapezoids AEFB, FBCG, and right 6GCD, as in figure 2.5. The area [ABCD] of quadrilateral ABCD is thus
given by

[ABCD] = [AED]− [AEFB]− [FBCG]− [GCD]

= 1
2(AE)(DE)− 1

2 (FE)(FB+AE)−

− 12(GF)(GC+FB)− 1
2 (DG)(GC)

= 1
2(13)(13)−

1
2 (3)(13+1)− 1

2(2)(2+1)− 1
2(8)(2)

= 84.5−21−3−8

= 52.5.
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#

1

2

3

4

5

6

7

8

9

10

11

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

1 2 3 4 5 6 7 8 9 10 11-1-2-3-4-5-6-7-8-9-10-11

D

C
B

A

E
FG

Figure 2.5: Example 76.

Homework

2.1.1 Problem Sketch the following regions on the plane.
1. R1 = {(x,y) ∈R2 : x≤ 2}
2. R2 = {(x,y) ∈R2 : y≥−3}
3. R3 = {(x,y) ∈R2 : |x|≤ 3, |y|≤ 4}
4. R4 = {(x,y) ∈R2 : |x|≤ 3, |y|≥ 4}
5. R5 = {(x,y) ∈R2 : x≤ 3,y≥ 4}
6. R6 = {(x,y) ∈R2 : x≤ 3,y≤ 4}

2.1.2 Problem Find the area of 6ABC where A = (−1,0), B =
(0,4) andC = (1,−1).

2.1.3 Problem Let A = [−10;5],B = {5,6,11} and C =]−∞;6[.
Answer the following true or false.

1. 5 ∈ A.
2. 6 ∈C.
3. (0,5,3) ∈ A×B×C.
4. (0,−5,3) ∈ A×B×C.

5. (0,5,3) ∈C×B×C.

6. A×B×C ⊆C×B×C.

7. A×B×C ⊆C3.

2.1.4 Problem True or false: (R\{0})2 = R2 \{(0,0)}.

2.2 Distance on the Real Plane
In this section we will deduce some important formulæ from analytic geometry. Our main tool will be the Pythagorean
Theorem from elementary geometry.

B(x2,y2)

A(x1,y1) C(x2,y1)|x2− x1|

|y2− y1|

Figure 2.6: Distance be-
tween two points.

B(x2,y2)

A(x1,y1) C(x2,y1)

MA

MB

(x,y)

Figure 2.7: Midpoint of a
line segment.

B(x2,y2)

A(x1,y1) C(x2,y1)

Pm

n

Q

R

Figure 2.8: Division of a
segment.
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77 Theorem (Distance Between Two Points on the Plane) The distance between the points A= (x1,y1),B = (x2,y2) in R2

is given by

AB= d〈(x1,y1),(x2,y2)〉 :=
√

(x1− x2)2+(y1− y2)2.

Proof: Consider two points on the plane, as in figure 2.6. Constructing the segments CA and BC with C =
(x2,y1), we may find the length of the segment AB, that is, the distance from A to B, by utilising the Pythagorean
Theorem:

AB2 = AC2+BC2 =⇒ AB=
√

(x2− x1)2+(y2− y1)2.

❑

78 Example The point (x,1) is at distance
√
11 from the point (1,−x). Find all the possible values of x.

Solution: " We have,

d〈(x,1),(1,−x)〉 =
√
11

⇐⇒
√

(x−1)2+(1+ x)2 =
√
11

⇐⇒ (x−1)2+(1+ x)2 = 11

⇐⇒ 2x2+2 = 11.

Hence, x=− 3
√
2
2 or x= 3

√
2
2 . #

79 Example Find the point equidistant from A= (−1,3),B= (2,4) andC = (1,1).

Solution: " Let (x,y) be the point sought. Then

d〈(x,y),(−1,3)〉= d〈(x,y),(2,4)〉 =⇒ (x+1)2+(y−3)2 = (x−2)2+(y−4)2,

d〈(x,y),(−1,3)〉= d〈(x,y),(1,1)〉 =⇒ (x+1)2+(y−3)2 = (x−1)2+(y−1)2.

Expanding, we obtain the following linear equations:

2x+1−6y+9=−4x+4−8y+16,

2x+1−6y+9=−2x+1−2y+1,

or
6x+2y= 10,

4x−4y=−8.

We easily find that (x,y) =
( 3
4 ,
11
4
)

. #

80 Example We say that a point (x,y) ∈ R2 is a lattice point if x ∈ Z and y ∈ Z. Demonstrate that no equilateral triangle on
the plane may have its three vertices as lattice points.

Solution: " Since a triangle may be translated with altering its angles, we may assume, without loss of gener-
ality, that we are considering 6ABC with A(0,0), B(b,0), C(m,n), with integers b > 0, m > 0 and n > 0, as in
figure 2.9. If6ABC were equilateral , then

AB= BC =CA =⇒ b=
√

(m−b)2+n2 =
√

m2+n2.

Squaring and expanding,
b2 = m2−2bm+b2+n2 = m2+n2.
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From BC=CA we deduce that

−2bm+b2 = 0 =⇒ b(b−2m) =⇒ b= 2m,

as we are assuming that b> 0. Hence,

b2 = m2+n2 =
b2

4
+n2 =⇒ n=

√
3
2
b.

Since we are assuming that b '= 0, n cannot be an integer, since
√
3 is irrational. #

(m,n)

(b,0)

Figure 2.9: Example 80.

81 Theorem (Midpoint of a Line Segment) The point
(
x1+ x2
2

,
y1+ y2
2

)

lies on the line joining A(x1,y1) and B(x2,y2),

and it is equidistant from both points.

Proof: First observe that it is easy to find the midpoint of a vertical or horizontal line segment. The interval [a;b]

has length b−a. Hence, its midpoint is at a+
b−a
2

=
a+b
2

.

Let (x,y) be the midpoint of the line segment joining A(x1,y1) and B(x2,y2). With C(x2,y1), form the triangle
6ABC, right-angled at C. From (x,y), consider the projections of this point onto the line segments AC and BC.
Notice that these projections are parallel to the legs of the triangle and so these projections pass through the
midpoints of the legs. Since AC is a horizontal segment, its midpoint is at MB = ( x1+x22 ,y1). As BC is a horizontal
segment, its midpoint is MA = (x2, y1+y22 ). The result is obtained on noting that (x,y) must have the same abscissa
as MB and the same ordinate as MA. ❑

In general, we have the following result.

82 Theorem (Joachimstal’s Formula) The point P which divides the line segment AB, with A(x1,y1) and B(x2,y2), into two
line segments in the ratio m : n has coordinates

(
nx1+mx2
m+n

,
ny1+my2
m+n

)

.

Proof: The proof proceeds along the lines of Theorem 81. First we consider the interval [a;b]. Suppose that

a< x< b and that
x−a
b− x

=
m
n
. This gives x=

na+mb
m+n

.

Form now 6ABC, right-angled at C. From P, consider the projection Q on AC and the projection R on BC. By
Thales’ Theorem, Q and R divide, respectively, AC and BC in the ratio m : n. By what was just demonstrated

about intervals, the coordinates of Q are
(
nx1+mx2
m+n

,y1
)

and the coordinates of R and
(

x2,
ny1+my2
m+n

)

, giving

the result. ❑

Homework
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2.2.1 Problem Find d〈(−2,−5),(4,−3)〉.

2.2.2 Problem If a and b are real numbers, find the distance be-
tween the points (a,a) and (b,b).

2.2.3 Problem Find the distance between the points (a2+a,b2+b)
and (b+a,b+a).

2.2.4 Problem Demonstrate by direct calculation that

d〈(a,b),
(
a+c
2

,
b+d
2

)

〉= d〈
(
a+c
2

,
b+d
2

)

,(c,d)〉.

2.2.5 Problem A car is located at point A= (−x,0) and an identical
car is located at point (x,0). Starting at time t = 0, the car at point
A travels downwards at constant speed, at a rate of a > 0 units per
second and simultaneously, the car at point B travels upwards at con-
stant speed, at a rate of b> 0 units per second. How many units apart
are these cars after t > 0 seconds?

2.2.6 Problem Point C is at
3
5
of the distance from A(1,5) to

B(4,10) on the segment AB (and closer to B than to A). FindC.

2.2.7 Problem For which value of x is the point (x,1) at distance 2
del from the point (0,2)?

2.2.8 Problem A bug starts at the point (−1,−1) and wants to travel
to the point (2,1). In each quadrant, and on the axes, it moves with
unit speed, except in quadrant II, where it moves with half the speed.
Which route should the bug take in order to minimise its time? The
answer is not a straight line from (−1,−1) to (2,1)!

2.2.9 Problem Find the point equidistant from (−1,0), (1,0) and
(0,1/2).

2.2.10 Problem Find the coordinates of the point symmetric to
(a,b) with respect to the point (b,a).

2.2.11 Problem Demonstrate that the diagonals of a rectangle are
congruent.

2.2.12 Problem Prove that the diagonals of a parallelogram bisect
each other..

2.2.13 Problem A fly starts at the origin and goes 1 unit up, 1/2 unit
right, 1/4 unit down, 1/8 unit left, 1/16 unit up, etc., ad infinitum.
In what coordinates does it end up?

2.2.14 Problem Find the coordinates of the point which is a quarter
of the way from (a,b) to (b,a).

2.2.15 Problem Find the coordinates of the point symmetric to
(−a,b) with respect to: (i) the x-axis, (ii) the y-axis, (iii) the origin.

2.2.16 Problem (Minkowski’s Inequality) Prove that if
(a,b),(c,d) ∈ R2, then

√

(a+c)2+(b+d)2 ≤
√

a2+b2+
√

c2+d2.

Equality occurs if and only if ad = bc.

2.2.17 Problem Prove the following generalisation of Minkowski’s
Inequality. If (ak,bk) ∈ (R\{0})2 ,1≤ k ≤ n, then

n

∑
k=1

√

a2k +b2k ≥

√
√
√
√

(
n

∑
k=1

ak

)2

+

(
n

∑
k=1

bk

)2

.

Equality occurs if and only if

a1
b1

=
a2
b2

= · · · =
an
bn

.

2.2.18 Problem (AIME 1991) Let P= {a1,a2, . . . ,an} be a collec-
tion of points with

0< a1 < a2 < · · · < an < 17.

Consider

Sn =min
P

n

∑
k=1

√

(2k−1)2+a2k ,

where the minimum runs over all such partitions P. Shew that ex-
actly one of S2,S3, . . . ,Sn, . . . is an integer, and find which one it is.

2.3 Circles

The distance formula gives an algebraic way of describing points on the plane.

83 Theorem The equation of a circle with radius R> 0 and centre (x0,y0) is

(x− x0)2+(y− y0)2 = R2. (2.1)

This is called the canonical equation of the circle with centre ((x0,y0)) and radius R.
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Proof: The point (x,y) belongs to the circle with radius R> 0 if and only if its distance from the centre of the
circle is R. This requires

⇐⇒ d〈(x,y),(x0,y0)〉 = R

⇐⇒
√

(x− x0)2+(y− y0)2 = R

⇐⇒ (x− x0)2+(y− y0)2 = R2

,

obtaining the result. See figure 2.10.❑

(x0,y0)
R

Figure 2.10: The circle.
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Figure 2.11: Example 84.
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Figure 2.12: Example 85.

84 Example The equation of the circle with centre (−1,2) and radius 3 is (x+ 1)2+(y− 2)2 = 9. Observe that the points
(−1±3,2) and (−1,2±3) are on the circle. Thus (−4,2) is the left-most point on the circle, (2,2) is the right-most, (−1,−1)
is the lower-most, and (−1,5) is the upper-most. The circle is shewn in figure 2.11.

85 Example Trace the circle of equation
x2+2x+ y2−6y=−6.

Solution: " Completing squares,

x2+2x+ y2−6y=−6 =⇒ x2+2x+1+ y2−6y+9=−6+1+9 =⇒ (x+1)2+(y−3)2 = 4,

from where we deduce that the centre of the circle is (−1,3) and the radius is 2. The point (−1+ 2,3) = (1,3)
lies on the circle, two units to the right of the centre. The point (−1−2,3) = (−3,3) lies on the circle, two units
to the left of the centre. The point (−1,3+ 2) = (−1,5) lies on the circle, two unidades above the centre. The
point (−1,3−2) = (−1,1) lies on the circle, two unidades below the centre. See figure 2.12. #

86 Example A diameter of a circle has endpoints (−2,−1) and (2,3). Find the equation of this circle and graph it.

Solution: " The centre of the circle lies on the midpoint of the diameter, thus the centre is
(
−2+2
2

,
−1+3
2

)

= (0,1).

The equation of the circle is
x2+(y−1)2 = R2.

To find the radius, we observe that (2,3) lies on the circle, thus

22+(3−1)2 = R2 =⇒ R= 2
√
2.

The equation of the circle is finally
x2+(y−1)2 = 8.

Observe that the points (0±2
√
2,1), (0,1±2

√
2), that is, the points (2

√
2,1), (−2

√
2,1), (0,1+2

√
2), (0,1−2

√
2),

(−2,−1), and (2,3) all lie on the circle. The graph appears in figure 2.13. #
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87 Example Draw the plane region
{(x,y) ∈ R2 : x2+ y2 ≤ 4, |x|≥ 1}.

Solution: " Observe that |x| ≥ 1 ⇐⇒ x ≥ 1 o x ≤ −1. The region lies inside the circle with centre (0,0) and
radius 2, to the right of the vertical line x= 1 and to the left of the vertical line x=−1. See figure 2.14.
#

88 Example Find the equation of the circle passing through (1,1), (0,1) and (1,2).

Solution: " Let (h,k) be the centre of the circle. Since the centre is equidistant from (1,1) and (0,1), we have,

(h−1)2+(k−1)2 = h2+(k−1)2, =⇒ h2−2h+1= h2 =⇒ h=
1
2
.

Since he centre is equidistant from (1,1) and (1,2), we have,

(h−1)2+(k−1)2 = (h−1)2+(k−2)2 =⇒ k2−2k+1= k2−4k+4 =⇒ k=
3
2
.

The centre of the circle is thus (h,k) = ( 12 ,
3
2). The radius of the circle is the distance from its centre to any point

on the circle, say, to (0,1):
√
(
1
2

)2
+

(
3
2
−1

)2
=

√
2
2

.

The equation sought is finally
(

x−
1
2

)2
+

(

y−
3
2

)2
=
1
2
.

See figure 2.15. #
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Figure 2.13: Example 2.13.
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Figure 2.14: Example 87.
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Figure 2.15: Example 88.

Homework

2.3.1 Problem Prove that the points (4,2) and (−2,−6) lie on the
circle with centre at (1,−2) and radius 5. Prove, moreover, that these
two points are diametrically opposite.

2.3.2 Problem A diameter AB of a circle has endpoints A = (1,2)

and B= (3,4). Find the equation of this circle.

2.3.3 Problem Find the equation of the circle with centre at (−1,1)
and passing through (1,2).
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2.3.4 Problem Rewrite the following circle equations in canonical
form and find their centres C and their radius R. Draw the circles.
Also, find at least four points belonging to each circle.

1. x2+y2−2y = 35,
2. x2+4x+y2−2y= 20,
3. x2+4x+y2−2y= 5,
4. 2x2−8x+2y2 = 16,
5. 4x2+4x+ 15

2 +4y2−12y = 0
6. 3x2+2x

√
3+5+3y2−6y

√
3= 0

2.3.5 Problem Let

R1 = {(x,y) ∈R2|x2+y2 ≤ 9},

R2 = {(x,y) ∈R2|(x+2)2+y2 ≤ 1},
R3 = {(x,y) ∈R2|(x−2)2+y2 ≤ 1},
R4 = {(x,y) ∈R2|x2+(y+1)2 ≤ 1},
R5 = {(x,y) ∈ R2||x|≤ 3, |y|≤ 3},
R6 = {(x,y) ∈ R2||x|≥ 2, |y|≥ 2}.

Sketch the following regions.

1. R1 \ (R2∪R3∪R4).

2. R5 \R1
3. R1 \R6
4. R2∪R3∪R6

2.3.6 Problem Find the equation of the circle passing through
(−1,2) and centre at (1,3).

2.3.7 Problem Find the canonical equation of the circle passing
through (−1,1), (1,−2), and (0,2).

2.3.8 Problem Let a,b,c be real numbers with a2 > 4b. Construct
a circle with diameter at the points (1,0) and (−a,b). Shew that the
intersection of this circle with the x-axis are the roots of the equation
x2+ax+b = 0. Why must we impose a2 > 4b?

2.3.9 Problem Draw

(x2+y2−100)((x−4)2+y2−4)((x+4)2+y2−4)(x2+(y+4)2−4) = 0.

2.4 Semicircles
Given a circle of centre (a,b) and radius R> 0, its canonical equation is

(x−a)2+(y−b)2 = R2.

Solving for y we gather
(y−b)2 = R2− (x−a)2 =⇒ y= b±

√

R2− (x−a)2.

If we took the + sign on the square root, then the values of y will lie above the line y= b, and hence y= b+
√

R2− (x−a)2
is the equation of the upper semicircle with centre at (a,b) and radius R> 0. Also, y= b−

√

R2− (x−a)2 is the equation of
the lower semicircle.

In a similar fashion, solving for x we obtain,

(x−a)2 = R2− (y−b)2 =⇒ x= a±
√

R2− (y−b)2.

Taking the + sign on the square root, the values of x will lie to the right of the line x= a, and hence x= a+
√

R2− (y−b)2
is the equation of the right semicircle with centre at (a,b) and radius R> 0. Similarly, x= a−

√

R2− (y−b)2 is the equation
of the left semicircle.
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Figure 2.16: Example 89.
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Figure 2.17: Example 90.
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Figure 2.18: Example 91.
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89 Example Figure 2.16 shews the upper semicircle y=
√
1− x2.

90 Example Draw the semicircle of equation y= 1−
√
−x2−6x−5.

Solution: " Since the square root has a minus sign, the semicircle will be a lower semicircle, lying below the
line y= 1. We must find the centre and the radius of the circle . For this, let us complete the equation of the circle
by squaring and rearranging. This leads to

y= 1−
√
−x2−6x−5 =⇒ y−1=−

√
−x2−6x−5

=⇒ (y−1)2 =−x2−6x−5

=⇒ x2+6x+9+(y−1)2=−5+9

=⇒ (x+3)2+(y−1)2 = 4,

whence the semicircle has centre at (−3,1) and radius 2. Its graph appears in figure 2.17. #

91 Example Find the equation of the semicircle in figure 2.18.

Solution: " The semicircle has centre at (−1,1) and radius 3. The full circle would have equation

(x+1)2+(y−1)2 = 9.

Since this is a left semicircle, we must solve for x and take the minus − on the square root:

(x+1)2+(y−1)2 = 9 =⇒ (x+1)2 = 9− (y−1)2 =⇒ x+1=−
√

9− (y−1)2 =⇒ x=−1−
√

9− (y−1)2,

whence the equation sought is x=−1−
√

9− (y−1)2. #

Homework
2.4.1 Problem Sketch the following curves.

1. y=
√
16− x2

2. x=−
√

16− y2

3. x=−
√

12−4y− y2

4. x=−5−
√

12+4y− y2

2.4.2 Problem Draw

(x2+ y2−100)(y−
√

4− (x+4)2)(y−
√

4− (x−4)2)(y+4+
√

4− x2) = 0.

2.5 Lines
In the previous sections we saw the link Algebra to Geometry by giving the equation of a circle and producing its graph, and
conversely, the link Geometry to Algebra by starting with the graph of a circle and finding its equation. This section will
continue establishing these links, but our focus now will be on lines.

We have already seen equations of vertical and horizontal lines. We give their definition again for the sake of completeness.
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92 Definition Let a and b be real number constants. A vertical line on the plane is a set of the form

{(x,y) ∈R2 : x= a}.

Similarly, a horizontal line on the plane is a set of the form

{(x,y) ∈ R2 : y= b}.

Figure 2.19: A vertical line. Figure 2.20: A horizontal line.

(x1,y1)

(x,y)

(x2,y2)

y 2
−
y 1

y−
y 1

x− x1
x2− x1

Figure 2.21: Theorem 93.

93 Theorem The equation of any non-vertical line on the plane can be written in the form y=mx+ k, where m and k are real
number constants. Conversely, any equation of the form y= ax+b, where a,b are fixed real numbers has as a line as a graph.

Proof: If the line is parallel to the x-axis, that is, if it is horizontal, then it is of the form y = b, where b is a
constant and so we may take m = 0 and k = b. Consider now a line non-parallel to any of the axes, as in figure
2.21, and let (x,y), (x1,y1), (x2,y2) be three given points on the line. By similar triangles we have

y2− y1
x2− x1

=
y− y1
x− x1

,

which, upon rearrangement, gives

y=

(
y2− y1
x2− x1

)

x− x1
(
y2− y1
x2− x1

)

+ y1,

and so we may take

m=
y2− y1
x2− x1

, k =−x1
(
y2− y1
x2− x1

)

+ y1.

Conversely, consider real numbers x1 < x2 < x3, and let P= (x1,ax1+b), Q= (x2,ax2+b), and R= (x3,ax3+b)
be on the graph of the equation y= ax+b. We will shew that

d〈P,Q〉+d〈Q,R〉= d〈P,R〉.

Since the points P,Q,R are arbitrary, this means that any three points on the graph of the equation y= ax+b are
collinear, and so this graph is a line. Then

d〈P,Q〉=
√

(x2− x1)2+(ax2−ax1)2 = |x2− x1|
√

1+a2 = (x2− x1)
√

1+a2,

d〈Q,R〉=
√

(x3− x2)2+(ax3−ax2)2 = |x3− x2|
√

1+a2 = (x3− x2)
√

1+a2,
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d〈P,Q〉=
√

(x3− x1)2+(ax3−ax1)2 = |x3− x1|
√

1+a2 = (x3− x1)
√

1+a2,

from where
d〈P,Q〉+d〈Q,R〉= d〈P,R〉

follows. This means that the points P,Q, and R lie on a straight line, which finishes the proof of the theorem. ❑

94 Definition The quantity m =
y2− y1
x2− x1

in Theorem 93 is the slope or gradient of the line passing through (x1,y1) and

(x2,y2). Since y = m(0)+ k, the point (0,k) is the y-intercept of the line joining (x1,y1) and (x2,y2). Figures 2.22 through
2.25 shew how the various inclinations change with the sign ofm.

Figure 2.22: m> 0 Figure 2.23: m< 0 Figure 2.24: m= 0 Figure 2.25: m= ∞

95 Example By Theorem 93, the equation y= x represents a line with slope 1 and passing through the origin. Since y = x,
the line makes a 45◦ angle with the x-axis, and bisects quadrants I and III. See figure 2.26

Figure 2.26: Example 95. Figure 2.27: Example 96. Figure 2.28: Example 97.

96 Example A line passes through (−3,10) and (6,−5). Find its equation and draw it.

Solution: " The equation is of the form y = mx+ k. We must find the slope and the y-intercept. To find m we
compute the ratio

m=
10− (−5)
−3−6

=−
5
3
.

Thus the equation is of the form y = −
5
3
x+ k and we must now determine k. To do so, we substitute either

point, say the first, into y = −
5
3
x+ k obtaining 10 = −

5
3
(−3)+ k, whence k = 5. The equation sought is thus

y = −
5
3
x+ 5. To draw the graph, first locate the y-intercept (at (0,5)). Since the slope is −

5
3
, move five units
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down (to (0,0)) and three to the right (to (3,0)). Connect now the points (0,5) and (3,0). The graph appears in
figure 2.27. #

97 Example Three points (4,u),(1,−1) and (−3,−2) lie on the same line. Find u.

Solution: " Since the points lie on the same line, any choice of pairs of points used to compute the gradient
must yield the same quantity. Therefore

u− (−1)
4−1

=
−1− (−2)
1− (−3)

which simplifies to the equation
u+1
3

=
1
4
.

Solving for u we obtain u=− 14 . #

Homework

2.5.1 Problem Assuming that the equations for the lines l1, l2, l3,
and l4 in figure 2.29 below can be written in the form y= mx+b for
suitable real numbers m and b, determine which line has the largest
value of m and which line has the largest value of b.

x

y

l1

l2

l3

l4

Figure 2.29: Problem 2.5.1.

2.5.2 Problem (AHSME 1994) Consider the L-shaped region in
the plane, bounded by horizontal and vertical segments with vertices
at (0,0),(0,3),(3,3),(3,1),(5,1) and (5,0). Find the gradient of the
line that passes through the origin and divides this area exactly in
half.

0

1

2

0 1 2 3 4

Figure 2.30: Problem 2.5.2.

2.5.3 Problem What is the slope of the line with equation
x
a

+
y
b

=

1?

2.5.4 Problem If the point (a,−a) lies on the line with equation
−2x+3y = 30, find the value of a.

2.5.5 Problem Find the equation of the straight line joining (3,1)
and (−5,−1).

2.5.6 Problem Let (a,b)∈R2. Find the equation of the straight line
joining (a,b) and (b,a).

2.5.7 Problem Find the equation of the line that passes through
(a,a2) and (b,b2).

2.5.8 Problem The points (1,m),(2,4) lie on a line with gradient m.
Find m.

2.5.9 Problem Consider the following regions on the plane.

R1 = {(x,y) ∈ R2|y≤ 1−x},

R2 = {(x,y) ∈ R2|y≥ x+2},
R3 = {(x,y) ∈ R2|y≤ 1+x}.

Sketch the following regions.
1. R1 \R2
2. R2 \R1
3. R1∩R2∩R3
4. R2 \ (R1∪R2)

2.5.10 Problem In figure 2.31, point M has coordinates (2,2),
points A,S are on the x-axis, point B is on the y-axis6SMA is isosce-

les at M, and the line segment SM has slope
1
2
. Find the coordinates

of points A,B,S.

M

AS

B

Figure 2.31: Problem 2.5.10.
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2.5.11 Problem Which points on the line with equation y = 6−2x
are equidistant from the axes?

2.5.12 Problem A vertical line divides the triangle with vertices
(0,0),(1,1) and (9,1) in the plane into two regions of equal area.

Find the equation of this vertical line.

2.5.13 Problem Draw

(x2−1)(y2−1)(x2−y2) = 0.

2.6 Parallel and Perpendicular Lines

(x2 ,y2)

(x1 ,y1)

(x2 ,y′2)

(x1 ,y′1)

Figure 2.32: Theorem 98.

y= mx

y= m1x

•

•

(1,m)

(1,m1)

Figure 2.33: Theorem 100.
.

98 Theorem Two lines are parallel if and only if they have the same slope.

Proof: Suppose the the lines L and L′ are parallel, and that the points A(x1,y1) y B(x2,y2) lie on L and that the
points A′(x1,y′1) and B

′(x2,y′2) lie on L
′. Observe tha t ABB′A′ is a parallelogram, and hence, y2− y1 = y′2− y′1,

which gives
y2− y1
x2− x1

=
y′2− y′1
x2− x1

,

demonstrating that the slopes of L and L′ are equal.

Assume now that L and L′ have the same slope. The

y2− y1
x2− x1

=
y′2− y′1
x2− x1

=⇒ y2− y1 = y′2− y′1.

Then the sides of AA′ and BB′ of the quadrilateral ABB′A′ are congruent. As these sides are also parallel, since
they are on the verticals x= x1 and x= x2, we deduce that ABB′A′ is a parallelogram, demonstrating that L and
L′ are parallel. ❑

99 Example Find the equation of the line passing through (4,0) and parallel to the line joining (−1,2) and (2,−4).

Solution: " First we compute the slope of the line joining (−1,2) and (2,−4):

m=
2− (−4)
−1−2

=−2.

The line we seek is of the form y=−2x+k. We now compute the y-intercept, using the fact that the line must pass
through (4,0). This entails solving 0=−2(4)+ k, whence k= 8. The equation sought is finally y=−2x+8. #
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100 Theorem Let y = mx+ k be a line non-parallel to the axes. If the line y = m1x+ k1 is perpendicular to y= mx+ k then
m1 =−

1
m

. Conversely, if mm1 =−1, then the lines with equations y= mx+ k and y= m1x+ k1 are perpendicular.

Proof: Refer to figure 2.33. Since we may translate lines without affecting the angle between them, we assume
without loss of generality that both y= mx+ k and y= m1x+ k1 pass through the origin, giving thus k= k1 = 0.
Now, the line y= mx meets the vertical line x= 1 at (1,m) and the line y= m1x meets this same vertical line at
(1,m1) (see figure 2.33). By the Pythagorean Theorem

(m−m1)2 = (1+m2)+ (1+m21) =⇒ m2−2mm1+m21 = 2+m2+m21 =⇒ mm1 =−1,

which proves the assertion. The converse is obtained by retracing the steps and using the converse to the
Pythagorean Theorem. ❑

101 Example Find the equation of the line passing through (4,0) and perpendicular to the line joining (−1,2) and (2,−4).

Solution: " The slope of the line joining (−1,2) and (2,−4) is −2. The slope of any line perpendicular to it

m1 =−
1
m

=
1
2
.

The equation sought has the form y=
x
2

+ k. We find the y-intercept by solving 0 =
4
2

+ k, whence k = −2. The

equation of the perpendicular line is thus y=
x
2
−2. #

102 Example For a given real number t, associate the straight line Lt with the equation

Lt : (4− t)y= (t+2)x+6t.

1. Determine t so that the point (1,2) lies on the line Lt and find the equation of this line.

2. Determine t so that the Lt be parallel to the x-axis and determine the equation of the resulting line.

3. Determine t so that the Lt be parallel to the y-axis and determine the equation of the resulting line.

4. Determine t so that the Lt be parallel to the line −5y= 3x−1.

5. Determine t so that the Lt be perpendicular to the line −5y= 3x−1.

6. Is there a point (a,b) belonging to every line Lt regardless of the value of t?

Solution: "

1. If the point (1,2) lies on the line Lt then we have

(4− t)(2) = (t+2)(1)+6t =⇒ t =
2
3
.

The line sought is thus

L2/3 : (4−
2
3
)y= (

2
3

+2)x+6
(
2
3

)

or y=
4
5
x+

6
5
.

2. We need t+2= 0 =⇒ t =−2. In this case

(4− (−2))y=−12 =⇒ y=−2.

3. We need 4− t = 0 =⇒ t = 4. In this case

0= (4+2)x+24 =⇒ x=−4.
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4. The slope of Lt is
t+2
4− t

,

and the slope of the line −5y= 3x−1 is −
3
5
. Therefore we need

t+2
4− t

=−
3
5

=⇒ −3(4− t) = 5(t+2) =⇒ t =−11.

5. In this case we need
t+2
4− t

=
5
3

=⇒ 5(4− t) = 3(t+2) =⇒ t =
7
4
.

6. Yes. From above, the obvious candidate is (−4,−2). To verify this observe that

(4− t)(−2) = (t+2)(−4)+6t,

regardless of the value of t.

#

3

2

(−3,5.4)

xP

y

L′

L

Figure 2.34: Example 103.
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Figure 2.35: Example 104.

(a,b)

(b,a)
y= x

Figure 2.36: Theorem 107.

103 Example In figure 2.34, the straight lines L y L′ are perpendicular and meet at the point P.

1. Find the equation of L′.

2. Find the coordinates of P.

3. Find the equation of the line L.

Solution: "

1. Notice that L′ passes through (−3,5.4) and through (0,3), hence it must have slope

5.4−3
−3−0

=−0.8.

The equation of L′ has the form y=−0.8x+k. Since L′ passes through (0,3), we deduce that L′ has equation
y=−0.8x+3.

2. Since P if of the form (2,y) and since it lies on L′, we deduce that y=−0.8(2)+3= 1.4.

3. L has slope −
1
−0.8

= 1.25. This means that L has equation of the form y= 1.25x+ k. Since P(2,1.4) lies
on L, we must have1.4= 1.25(2)+ k =⇒ k =−1.1. We deduce that L has equation y= 1.25x−1.1.



40 Chapter 2

#

104 Example Consider the circle C of centre O(1,2) and passing through A(5,5), as in figure D.184.

1. Find the equation of C .

2. Find all the possible values of a for which the point (2,a) lies on the circle C .

3. Find the equation of the line L tangent to C at A.

Solution: "

1. Let R> 0 be the radius of the circle . Then equation of the circle has the form

(x−1)2+(y−2)2 = R2.

Since A(5,5) lies on the circle,

(5−1)2+(5−2)2 = R2 =⇒ 16+9= R2 =⇒ 25= R2,

whence the equation sought for C is

(x−1)2+(y−2)2 = 25.

2. If the point (2,a) lies on C , we will have

(2−1)2+(a−2)2= 25 =⇒ 1+(a−2)2= 25 =⇒ (a−2)2= 24 =⇒ a−2=±
√
24 =⇒ a= 2±

√
24= 2±2

√
6.

3. L is perpendicular to the line joining (1,2) and (5,5). As this last line has slope

5−2
5−1

=
3
4
,

the line L will have slope−
4
3
. Thus L has equation of the form

y=−
4
3
x+ k.

As (5,5) lies on the line,

5=−
4
3
·5+ k =⇒ 5+

20
3

= k =⇒ k =
35
3

,

from where we gather that L has equation y=−
4
3
x+

35
3
.

#

We will now demonstrate two results that will be needed later.

105 Theorem (Distance from a Point to a Line) Let L : y= mx+ k be a line on the plane and let P= (x0,y0) be a point on
the plane, not on L. The distance d〈L,P〉 from L to P is given by

|x0m+ k− y0|√
1+m2

.

Proof: If the line had infinite slope, then L would be vertical, and of equation x = c, for some constant c, and
then clearly,

d〈L,P〉= |x0− c|.
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If m= 0, then L would be horizontal, and then clearly

d〈L,P〉= |y0− k|,

agreeing with the theorem. Suppose now that m '= 0. Refer to figure 2.37. The line L has slope m and all
perpendicular lines to L must have slope − 1

m. The distance from P to L is the length of the line segment joining
P with the point of intersection (x1,y1) of the line L′ perpendicular to L and passing through P. Now, it is easy to
see that L′ has equation

L′ : y=−
1
m
x+ y0+

x0
m

,

from where L and L′ intersect at

x1 =
y0m+ x0−bm

1+m2
, y1 =

y0m2+ x0m+ k
1+m2

.

This gives

d〈L,P〉 = d〈(x0,y0),(x1,y1)〉

=
√

(x0− x1)2+(y0− y1)2

=

√
(

x0−
y0m+ x0− km

1+m2

)2
+

(

y0−
y0m2+ x0m+ k

1+m2

)2

=

√

(x0m2− y0m+ km)2+(y0− x0m− k)2
1+m2

=

√

(m2+1)(x0m− y0+ k)2

1+m2

=
|x0m− y0+ k|√

1+m2
,

proving the theorem.

Aliter: A “proof without words” can be obtained by considering the similar right triangles in figure 2.38. ❑

(x1 ,y1)

L : y= mx+ k

(x0 ,y0)

Figure 2.37: Theorem 105.

(x0,y0)

(x0,mx0+ k)

|m
x 0

+
k−

y 0
|

d

√ 1
+
m
2

1

m

Figure 2.38: Theorem 105.

106 Example Find the distance between the line L : 2x−3y= 1 and the point (−1,1).
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Solution: " The equation of the line L can be rewritten in the form L : y= 2
3x−

1
3 . Using Theorem 105, we have

d〈L,P〉=
|− 2

3 −1−
1
3 |

√

1+( 23)
2

=
6
√
13
13

.

#

107 Theorem The point (b,a) is symmetric to the point (a,b) with respect to the line y= x.

Proof: The line joining (b,a) to (a,b) has equation y= −x+a+b. This line is perpendicular to the line y= x
and intersects it when

x=−x+a+b =⇒ x=
a+b
2

.

Then, since y= x=
a+b
2

, the point of intersection is ( a+b2 , a+b2 ). But this point is the midpoint of the line segment
joining (a,b) to (b,a), which means that both (a,b) and (b,a) are equidistant from the line y = x, establishing
the result. See figure 2.36. ❑

Homework

2.6.1 Problem Find the equation of the straight line parallel to the
line 8x−2y = 6 and passing through (5,6).

2.6.2 Problem Let (a,b) ∈ (R\{0})2. Find the equation of the line
passing through (a,b) and parallel to the line x

a −
y
b = 1.

2.6.3 Problem Find the equation of the straight line normal to the
line 8x−2y = 6 and passing through (5,6).

2.6.4 Problem Let a,b be strictly positive real numbers. Find the
equation of the line passing through (a,b) and perpendicular to the
line x

a −
y
b = 1.

2.6.5 Problem Find the equation of the line passing through (12,0)
and parallel to the line joining (1,2) and (−3,−1).

2.6.6 Problem Find the equation of the line passing through (12,0)
and normal to the line joining (1,2) and (−3,−1).

2.6.7 Problem Find the equation of the straight line tangent to the
circle x2+y2 = 1 at the point ( 12 ,

√
3
2 ).

2.6.8 Problem Consider the line L passing through (a,a2) and
(b,b2). Find the equations of the lines L1 parallel to L and L2 normal
to L, if L1 and L2 must pass through (1,1).

2.6.9 Problem For any real number t, associate the straight line Lt
having equation

(2t−1)x+(3− t)y−7t +6= 0.

In each of the following cases, find an t satisfying the stated condi-
tions.

1. Lt passes through (1,1).

2. Lt passes through the origin (0,0).
3. Lt is parallel to the x-axis.
4. Lt is parallel to the y-axis.
5. Lt is parallel to the line of equation 3x−2y−6 = 0.
6. Lt is normal to the line of equation y= 4x−5.
7. Lt has gradient −2.
8. Is there a point (x0,y0) belonging to Lt no matter which real
number t be chosen?

2.6.10 Problem For any real number t, associate the straight line Lt
having equation

(t−2)x+(t+3)y+10t −5= 0.

In each of the following cases, find an t and the resulting line satis-
fying the stated conditions.

1. Lt passes through (−2,3).
2. Lt is parallel to the x-axis.
3. Lt is parallel to the y-axis.
4. Lt is parallel to the line of equation x−2y−6 = 0.
5. Lt is normal to the line of equation y=− 14x−5.
6. Is there a point (x0,y0) belonging to Lt no matter which real
number t be chosen?

2.6.11 Problem Shew that the four points A= (−2,0), B= (4,−2),
C = (5,1), and D= (−1,3) form the vertices of a rectangle.

2.6.12 Problem Find the distance from the point (1,1) to the line
y=−x.

2.6.13 Problem Let a ∈ R. Find the distance from the point (a,0)
to the line L : y= ax+1.

2.6.14 Problem Find the equation of the circle with centre at (3,4)
and tangent to the line x−2y+3 = 0.
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2.6.15 Problem 6ABC has vertices at A(a,0), B(b,0) and C(0,c),
where a < 0 < b. Demonstrate, using coordinates, that the medi-

ans of 6ABC are concurrent at the point
(
a+b
3

,
c
3

)

. The point of

concurrence is called the barycentre or centroid of the triangle.

2.6.16 Problem 6ABC has vertices at A(a,0), B(b,0) and C(0,c),
where a < 0 < b, c '= 0. Demonstrate, using coordinates, that the

altitudes of6ABC are concurrent at the point
(

0,−
ab
c

)

. The point

of concurrence is called the orthocentre of the triangle.

2.6.17 Problem 6ABC has vertices at A(a,0), B(b,0) y C(0,c),
where a < 0 < b. Demonstrate, using coordinates, that the
perpendicular bisectors of 6ABC are concurrent at the point
(
a+b
2

,
ab+c2

2c

)

. The point of concurrence is called the circum-

centre of the triangle.

2.6.18 Problem Demonstrate that the diagonals of a square are mu-
tually perpendicular.

2.7 Linear Absolute Value Curves
In this section we will use the sign diagram methods of section 1.5 in order to decompose certain absolute value curves as the
union of lines.

108 Example Since

|x| =











x if x≥ 0

−x if x< 0

the graph of the curve y= |x| is that of the line y=−x for x< 0 and that of the line y= x when x≥ 0. The graph can be seen
in figure F.4.

109 Example Draw the graph of the curve with equation y= |2x−1|.

Solution: " Recall that either |2x−1| = 2x−1 or that |2x−1| = −(2x−1), depending on the sign of 2x−1.

If 2x−1≥ 0 then x≥
1
2
and so we have y= 2x−1. This means that for x≥

1
2
, we will draw the graph of the line

y= 2x−1. If 2x−1< 0 then x<
1
2
and so we have y=−(2x−1) = 1−2x. This means that for x<

1
2
, we will

draw the graph of the line y= 1−2x. The desired graph is the union of these two graphs and appears in figure
2.40. #
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Figure 2.39: y= |x|.
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Figure 2.40: Example 109.
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Figure 2.41: Example 110.

110 Example Consider the equation y = |x+ 2|− |x− 2|. The terms in absolute values vanish when x = −2 or x = −2. If
x≤−2 then

|x+2|− |x−2|= (−x−2)− (−x+2)=−4.
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For −2≤ x≤ 2, we have
|x+2|− |x−2|= (x+2)− (−x+2)= 2x.

For x≥ 2, we have
|x+2|− |x−2|= (x+2)− (x−2) = 4.

Then,

y= |x+2|− |x−2|=

















−4 if x≤−2,

2x if −2≤ x≤+2,

+4 if x≥+2,

The graph is the union of three lines (or rather, two rays and a line segment), and can be see in figure F.5.
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Figure 2.42: Example 111.
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Figure 2.43: Example 112.

111 Example Draw the graph of the curve y= |1− |x||.

Solution: " The expression 1− |x| changes sign when 1− |x| = 0, that is, when x = ±1. The expression |x|
changes sign when x= 0. Thus we puncture the real line at x=−1, x= 0 and x= 1.
When x≤−1

|1− |x||= |x|−1=−x−1.

When −1≤ x≤ 0
|1− |x||= 1− |x|= 1+ x.

When 0≤ x≤ 1
|1− |x||= 1− |x|= 1− x.

When x≥ 1
|1− |x||= |x|−1= x−1.

Hence,

y= |1− |x||=

























−x−1 if x≤−1,

1+ x if −1≤ x≤ 0,

1− x if 0≤ x≤ 1,

x−1 if x≥ 1,
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The graph appears in figure F.6.

#

112 Example Using Theorem 107, we may deduce that the graph of the curve x= |y| is that which appears in figure F.7

Homework

2.7.1 Problem Consider the curve

C : y= |x−1|− |x|+ |x+1| .

1. Find an expression without absolute values for C when x ≤
−1.

2. Find an expression without absolute values for C when −1≤
x≤ 0.

3. Find an expression without absolute values for C when 0 ≤
x≤ 1.

4. Find an expression without absolute values for C when x≥ 1.

5. Draw C .

2.7.2 Problem Draw the graph of the curve of equation |x| = |y|.

2.7.3 Problem Draw the graph of the curve of equation y=
|x|+x
2

.

2.7.4 Problem Draw the plane region

{(x,y) ∈R2 : x2+y2 ≤ 16, |x|+ |y| ≥ 4}.

2.7.5 Problem Draw the graphs of the following equations.

1. y= |x+2|

2. y= 3− |x+2|

3. y= 2|x+2|

4. y= |x−1|+ |x+1|

5. y= |x−1|− |x+1|

6. y= |x+1|− |x−1|

7. y= |x−1|+ |x|+ |x+1|

8. y= |x−1|− |x|+ |x+1|

9. y= |x−1|+x+ |x+1|

10. y= |x+3|+2|x−1|− |x−4|

2.8 Parabolas, Hyperbolas, and Ellipses
113 Definition A parabola is the collection of all the points on the plane whose distance from a fixed point F (called the
focus of the parabola) is equal to the distance to a fixed line L (called the directrix of the parabola). See figure 2.44, where
FD=DP.

We can draw a parabola as follows. Cut a piece of thread as long as the trunk of T-square (see figure 2.45). Tie one end to the
end of the trunk of the T-square and tie the other end to the focus, say, using a peg. Slide the crosspiece of the T-square along
the directrix, while maintaining the thread tight against the ruler with a pencil.

F
D

P
L

Figure 2.44: Definition of a
parabola. Figure 2.45: Drawing a parabola.
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Figure 2.46: Example 115.

114 Theorem Let d > 0 be a real number. The equation of a parabola with focus at (0,d) and directrix y=−d is y=
x2

4d
.
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Proof: Let (x,y) be an arbitrary point on the parabola. Then the distance of (x,y) to the line y= −d is |y+d|.
The distance of (x,y) to the point (0,d) is

√

x2+(y−d)2. We have

|y+d|=
√

x2+(y−d)2 =⇒ (|y+d|)2 = x2+(y−d)2

=⇒ y2+2yd+d2 = x2+ y2−2yd+d2

=⇒ 4dy= x2

=⇒ y=
x2

4d
,

as wanted. ❑

! Observe that the midpoint of the perpendicular line segment from the focus to the directrix is on the parabola.

We call this point the vertex. For the parabola y=
x2

4d
of Theorem 114, the vertex is clearly (0,0).

115 Example Draw the parabola y= x2.

Solution: " From Theorem 114, we want
1
4d

= 1, that is, d =
1
4
. Following Theorem 114, we locate the focus

at (0, 14 ) and the directrix at y = −
1
4
and use a T-square with these references. The vertex of the parabola is at

(0,0). The graph is in figure 2.46. #
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Figure 2.47: x= y2.

1

2

3

-1

-2

-3

1 2 3-1-2-3

Figure 2.48: y=
√
x.
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Figure 2.49: y=−
√
x.

116 Example Using Theorem 107, we may draw the graph of the curve x= y2. Its graph appears in figure 2.47.

117 Example Taking square roots on x= y2, we obtain the graphs of y=
√
x and of y=−

√
x. Their graphs appear in figures

2.48 and 2.49.

118 Definition A hyperbola is the collection of all the points on the plane whose absolute value of the difference of the
distances from two distinct fixed points F1 and F2 (called the foci2 of the hyperbola) is a positive constant. See figure 2.50,
where |F1D−F2D| = |F1D′ −F2D′|.

We can draw a hyperbola as follows. Put tacks on F1 and F2 and measure the distance F1F2. Attach piece of thread to one end
of the ruler, and the other to F2, while letting the other end of the ruler to pivot around F1. The lengths of the ruler and the
thread must satisfy

length of the ruler− length of the thread< F1F2.
2Foci is the plural of focus.
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Hold the pencil against the side of the rule and tighten the thread, as in figure 2.51.

F1

F2
D

D′

Figure 2.50: Definition of a hyper-
bola. Figure 2.51: Drawing a hyperbola. Figure 2.52: The hyperbola y=

1
x
.

119 Theorem Let c > 0 be a real number. The hyperbola with foci at F1 = (−c,−c) and F2 = (c,c), and whose absolute

value of the difference of the distances from its points to the foci is 2c has equation xy=
c2

2
.

Proof: Let (x,y) be an arbitrary point on the hyperbola. Then

|d〈(x,y),(−c,−c)〉−d〈(x,y),(c,c)〉| = 2c

⇐⇒
∣
∣
∣

√

(x+ c)2+(y+ c)2−
√

(x− c)2+(y− c)2
∣
∣
∣= 2c

⇐⇒ (x+ c)2+(y+ c)2+(x− c)2+(y− c)2−2
√

(x+ c)2+(y+ c)2 ·
√

(x− c)2+(y− c)2 = 4c2

⇐⇒ 2x2+2y2 = 2
√

(x2+ y2+2c2)+ (2xc+2yc) ·
√

(x2+ y2+2c2)− (2xc+2yc)

⇐⇒ 2x2+2y2 = 2
√

(x2+ y2+2c2)2− (2xc+2yc)2

⇐⇒ (2x2+2y2)2 = 4
(

(x2+ y2+2c2)2− (2xc+2yc)2
)

⇐⇒ 4x4+8x2y2+4y4 = 4((x4+ y4+4c4+2x2y2+4y2c2+4x2c2)− (4x2c2+8xyc2+4y2c2))

⇐⇒ xy=
c2

2
,

where we have used the identities

(A+B+C)2 = A2+B2+C2+2AB+2AC+2BC and
√
A−B ·

√
A+B=

√

A2−B2.

❑

! Observe that the points
(

−
c√
2
,−

c√
2

)

and
(

c√
2
,
c√
2

)

are on the hyperbola xy=
c2

2
. We call these points

the vertices3 of the hyperbola xy=
c2

2
.

120 Example To draw the hyperbola y=
1
x
we proceed as follows. According to Theorem119, its two foci are at (−

√
2,−
√
2)

and (
√
2,
√
2). Put length of the ruler− length of the thread= 2

√
2. By alternately pivoting about these points using the pro-

cedure above, we get the picture in figure 2.52.
3Vertices is the plural of vertex.
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121 Definition An ellipse is the collection of points on the plane whose sum of distances from two fixed points, called the
foci, is constant.

122 Theorem The equation of an ellipse with foci F1 = (h− c,k) and F2 = (h+ c,k) and sum of distances is the constant
t = 2a is

(x−h)2

a2
+

(y− k)2

b2
= 1,

where b2 = a2− c2.

Proof: By the triangle inequality, t > F1F2 = 2c, from where a> c. It follows that

d〈(x,y),(x1,y1)〉+d〈(x,y),(x2,y2)〉= t

⇐⇒
√

(x−h+ c)2+(y− k)2 = 2a−
√

(x−h− c)2+(y− k)2

⇐⇒ (x−h+ c)2+(y− k)2 = 4a2−4a
√

(x−h− c)2+(y− k)2+(x−h− c)2+(y− k)2

⇐⇒ (x−h)2+2c(x−h)+ c2 = 4a2−4a
√

(x−h− c)2+(y− k)2+(x−h)2−2c(x−h)+ c2

⇐⇒ (x−h)c−a2 =−a
√

(x−h− c)2+(y− k)2

⇐⇒ (x−h)2c2−2a2c(x−h)+a2 = a2(x−h− c)2+a2(y− k)2

⇐⇒ (x−h)2c2−2a2c(x−h)+a2 = a2(x−h)2−2a2c(x−h)+a2c2+a2(y− k)2

⇐⇒ (x−h)2(c2−a2)−a2(y− k)2 = a2c2−a2

⇐⇒
(x−h)2

a2
+

(y− k)2

a2− c2
= 1.

Since a2− c2 > 0, we may let b2 = a2− c2, obtaining the result❑

123 Definition The line joining (h+a,k) and (h−a,k) is called the horizontal axis of the ellipse and the line joining (h,k−b)
and (h,k+b) is called the vertical axis of the ellipse. max(a,b) is the semi-major axis and min(a,b) the semi-minor axis.

!The canonical equation of an ellipse whose semi-axes are parallel to the coordinate axes is thus

(x−h)2

a2
+

(y− k)2

b2
= 1.

Figure 2.53: Drawing an ellipse.

Figure 2.53 shews how to draw an ellipse by putting tags on the foci, tying the ends of a string to them and tightening the
string with a pencil.

124 Example The curve of equation 9x2−18x+4y2+8y= 23 is an ellipse, since, by completing squares,

9(x2−2x+1)+4(y2+2y+1) = 23+9+4 =⇒ 9(x−1)2+4(y+1)2 = 36 =⇒
(x−1)2

4
+

(y+1)2

9
= 1.
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The centre of the ellipse is (h,k) = (1,−1). The semi-major axis measures
√
9 = 3 units and the semi-minor axis measures√

4= 2 units.

Homework

2.8.1 Problem Let d > 0 be a real number. Prove that the equation

of a parabola with focus at (d,0) and directrix x =−d is x=
y2

4d
.

2.8.2 Problem Find the focus and the directrix of the parabola x =
y2.

2.8.3 Problem Find the equation of the parabola with directrix y=
−x and vertex at (1,1).

2.8.4 Problem Draw the curve x2+2x+4y2−8y= 4.

2.8.5 Problem The point (x,y) moves on the plane in such a way
that it is equidistant from the point (2,3) and the line x = −4. Find

the equation of the curve it describes.

2.8.6 Problem The points A(0,0) , B, and C lie on the parabola

y =
x2

2
as shewn in figure 2.54. If 6ABC is equilateral, determine

the coordinates of B andC.

A

BC

Figure 2.54: Problem 2.8.6.



3 Functions

This chapter introduces the central concept of a function. We will only concentrate on functions defined by algebraic formulæ
with inputs and outputs belonging to the set of real numbers. We will introduce some basic definitions and will concentrate on
the algebraic aspects, as they pertain to formulæ of functions. The subject of graphing functions will be taken in subsequent
chapters.

3.1 Basic Definitions

Dom( f )

Im( f )f

Target( f )

Figure 3.1: The main ingredients of a function.

125 Definition By a (real-valued) function f :
Dom( f ) → Target( f )

x "→ f (x)
we mean the collection of the following ingre-

dients:

1. a name for the function. Usually we use the letter f .

2. a set of real number inputs—usually an interval or a finite union of intervals—called the domain of the function. The
domain of f is denoted by Dom( f ).

3. an input parameter , also called independent variable or dummy variable. We usually denote a typical input by the letter
x.

4. a set of possible real number outputs—usually an interval or a finite union of intervals—of the function, called the target
set of the function. The target set of f is denoted by Target( f ).

5. an assignment rule or formula, assigning to every input a unique output. This assignment rule for f is usually denoted
by x "→ f (x). The output of x under f is also referred to as the image of x under f , and is denoted by f (x).

See figure 3.1.

126 Definition Colloquially, we refer to the “function f ” when all the other descriptors of the function are understood.

127 Definition The image of a function f :
Dom( f ) → Target( f )

x "→ f (x)
is the set

Im( f ) = { f (x) : x ∈ Dom( f )},

that is, the collection of all outputs of f .

50
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! Necessarily we have Im ( f ) ⊆ Target( f ), but we will see later on that these two sets may not be equal.

128 Example Find all functions with domain {a,b} and target set {c,d}.

Solution: " Since there are two choices for the output of a and two choices for the output of b, there are 22 = 4
such functions, namely:

1. f1 given by f1(a) = f1(b) = c. Observe that
Im( f1) = {c}.

2. f2 given by f2(a) = f2(b) = d. Observe that
Im( f2) = {d}.

3. f3 given by f3(a) = c, f3(b) = d. Observe that
Im ( f1) = {c,d}.

4. f4 given by f4(a) = d, f4(b) = c. Observe that
Im ( f1) = {c,d}.

#

! It is easy to see that if A has n elements and B has m elements, then the number of functions from A to B
is mn. For, if a1,a2, . . . ,an are the elements of A, then there are m choices for the output of a1, m choices for the
output of a2, . . . , m choices for the output of an, giving a total of

m · · ·m
︸ ︷︷ ︸

n times

= mn.

possibilities.

In some computer programming languages like C, C++, and Java, one defines functions by statements likeint f(double).
This tells the computer that the input set is allocated enough memory to take a double (real number) variable, and that the
output will be allocated enough memory to carry an integer variable.

129 Example Consider the function

f :
R → R

x "→ x2
.

Find the following:

1. f (0)

2. f (−
√
2)

3. f (1−
√
2)

4. What is Im( f )?

Solution: " We have

1. f (0) = 02 = 0
2. f (−

√
2) = (−

√
2)2 = 2

3. f (1−
√
2) = (1−

√
2)2 = 12−2 ·1 ·

√
2+(
√
2)2 = 3−2

√
2

4. Since the square of every real number is positive, we have Im ( f ) ⊆ [0;+∞[. Now, let a ∈ [0;+∞[. Then√
a ∈ R and f (

√
a) = a, so a ∈ Im( f ). This means that [0;+∞[ ⊆ Im( f ). We conclude that Im ( f ) =

[0;+∞[.

#

In the above example it was relatively easy to determine the image of the function. In most cases, this calculation is in fact
very difficult. This is the reason why in the definition of a function we define the target set to be the set of all possible outputs,
not the actual outputs. The target set must be large enough to accommodate all the possible outputs of a function.
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130 Example Does

f :
R → Z

x "→ x2
.

define a function?

Solution: " No. The target set is not large enough to accommodate all the outputs. The above rule is telling us
that every output belongs to Z. But this is not true, since for example, f (1−

√
2) = 3−2

√
2 '∈ Z. #

Upon consideration of the preceding example, the reader may wonder why not then, select as target set the entire set R. This
is in fact what is done in practice, at least in Calculus. From the point of view of Computer Programming, this is wasteful,
as we would be allocating more memory than really needed. When we introduce the concept of surjections later on in the
chapter, we will see the importance of choosing an appropriate target set.

131 Example Does

f :
R → R

x "→
1
x2

.

define a function?

Solution: " No. In a function, every input must have a defined output. Since f (0) is undefined, this is not a
function. #

132 Definition (Equality of Functions) Two functions are equal if

1. Their domains are identical.

2. Their target sets are identical.

3. Their assignment rules are identical.

This means that the only two things that can be different are the names of the functions and the name of the input parameter.

133 Example Consider the functions

f :
Z → Z

x "→ x2
g :

Z → Z

s "→ s2
h :

Z → R

x "→ x2
.

Then the functions f and g are the same function. The functions f and h are different functions, as their target sets are
different.

We must pay special attention to the fact that although a formula may make sense for a “special input”, the “input” may not
be part of the domain of the function.

134 Example Consider the function

f :
N\{0} → Q

x "→
1

x+
1
x

.

Determine:



Basic Definitions 53

1. f (1)

2. f (2)

3. f
(
1
2

)

4. f (−1)

Solution: "

1. f (1) =
1

1+
1
1

=
1
2

2. f (2) =
1

2+
1
2

=
1
5
2

=
2
5

3. f
(
1
2

)

=
1

1
2

+
1
1
2

=
1

1
2

+2
=
2
5

4. f (−1) is undefined, as −1 '∈ N\{0}, that is −1 is not part of the domain.

#

It must be emphasised that the exhaustion of the elements of the domain is crucial in the definition of a function. For
example, the diagram in figure 3.2 does not represent a function, as some elements of the domain are not assigned. Also
important in the definition of a function is the fact that the output must be unique. For example, the diagram in 3.3 does not
represent a function, since the last element of the domain is assigned to two outputs.

Figure 3.2: Not a function. Figure 3.3: Not a function.

To conclude this section, we will give some miscellaneous examples on evaluation of functions.

135 Example (The Identity Function) Consider the function

Id :
R → R

x "→ x
.

This function assigns to every real its own value. Thus Id (−1) =−1, Id (0) = 0, Id (4) = 4, etc.

! In general, if A⊆ R, the identity function on the set A is defined and denoted by

Id A :
A → A

x "→ x
.
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136 Example Let γ :
R → R

x "→ x2−2
. Find γ(x2+1)− γ(x2−1).

Solution: " We have

γ(x2+1)− γ(x2−1) = ((x2+1)2−2)− ((x2−1)2−2) = (x4+2x2+1−2)− (x4−2x2+1−2) = 4x2.

#

Sometimes the assignment rule of a function varies through various subsets of its domain. We call any such function a
piecewise-defined function.

137 Example Consider the function f : [−5;4]→R defined by

f (x) =

















1 if 2x ∈ [−5;1[

2 if x= 1

x+1 if x ∈ ]1;4]

Determine f (−3), f (1), f (4) and f (5).

Solution: " Plainly, f (−3) = 2(−3) =−6, f (1) = 2, f (4) = 4+1= 5, and f (5) is undefined. #

138 Example Write f :R→ R, f (x) = |2x−1| as a piecewise-defined function.

Solution: " We have f (x) = 2x−1 for 2x−1≥ 0 and f (x) =−(2x−1) for 2x−1< 0. This gives

f (x) =







2x−1 if x≤ 1
2

1−2x if x> 1
2

#

Lest the student think that evaluation of functions is a simple affair, let us consider the following example.

139 Example Let f : R→ R satisfy f (2x+4) = x2−2. Find

1. f (6)

2. f (1)

3. f (x)

4. f ( f (x))

Solution: " Since 2x+4 is what is inside the parentheses in the formula given, we need to make all inputs equal
to it.

1. We need 2x+4= 6 =⇒ x= 1. Hence

f (6) = f (2(1)+4) = 12−2=−1.

2. We need 2x+4= 1 =⇒ x=− 32 . Hence

f (1) = f
(

2
(

−
3
2

)

+4
)

=

(

−
3
2

)2
−2=

1
4
.
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3. Here we confront a problem. If we proceeded blindly as before and set 2x+ 4 = x, we would get x = −4,
which does not help us much, because what we are trying to obtain is f (x) for every value of x. The key
observation is that the dummy variable has no idea of what one is calling it, hence, we may first rename the

dummy variable: say f (2u+4) = u2−2. We need 2u+4= x =⇒ u=
x−4
2

. Hence

f (x) = f
(

2
(
x−4
2

)

+4
)

=

(
x−4
2

)2
−2=

x2

4
−2x+2.

4. Using the above part,

f ( f (x)) =
( f (x))2

4
−2 f (x)+2

=

(
x2

4
−2x+2

)2

4
−2

(
x2

4
−2x+2

)

+2

=
x4

64
−
x3

4
+
3x2

4
+2x−1

#

140 Example f :R→R is a function satisfying f (3) = 2 and f (x+3) = f (3) f (x). Find f (−3).

Solution: " Since we are interested in f (−3), we first put x=−3 in the relation, obtaining

f (0) = f (3) f (−3).

Thus we must also know f (0) in order to find f (−3). Letting x= 0 in the relation,

f (3) = f (3) f (0) =⇒ f (3) = f (3) f (3) f (−3) =⇒ 2= 4 f (−3) =⇒ f (−3) =
1
2
.

#

The following example is a surprising application of the concept of function.

141 Example Consider the polynomial (x2−2x+2)2008. Find its constant term. Also, find the sum of its coefficients after
the polynomial has been expanded and like terms collected.

Solution: " The polynomial has degree 2 ·2008= 4016. This means that after expanding out, it can be written
in the form

(x2−2x+2)2008 = a0x4016+a1x4015+ · · ·+a4015x+a4016.

Consider now the function

p :
R → R

x "→ a0x4016+a1x4015+ · · ·+a4015x+a4016
.

The constant term of the polynomial is a4016, which happens to be p(0). Hence the constant term is

a4016 = p(0) = (02−2 ·0+2)2008= 22008.

The sum of the coefficients of the polynomial is

a0+a1+a2+ · · ·+a4016 = p(1) = (12−2 ·1+2)2008= 1.

#

Homework
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3.1.1 Problem Let

f :
R → R

x "→
x−1
x2+1

.

Find f (0)+ f (1)+ f (2) and f (0+1+2). Is it true that

f (0)+ f (1)+ f (2) = f (0+1+2) ?

Is there a real solution to the equation f (x) =
1
x
? Is there a real

solution to the equation f (x) = x?

3.1.2 Problem Find all functions from {0,1,2} to {−1,1}.

3.1.3 Problem Find all functions from {−1,1} to {0,1,2} .

3.1.4 Problem Let f : R→ R, x "→ x2−x. Find

f (x+h)− f (x−h)
h

.

3.1.5 Problem Let f : R→ R, x "→ x3−3x. Find

f (x+h)− f (x−h)
h

.

3.1.6 Problem Consider the function f : R \ {0}→ R, f (x) =
1
x
.

Which of the following statements are always true?

1. f
(a
b

)

=
f (a)
f (b)

.

2. f (a+b) = f (a)+ f (b).
3. f (a2) = ( f (a))2

3.1.7 Problem Let a : R→ R, be given by a(2−x) = x2−5x. Find
a(3), a(x) and a(a(x)).

3.1.8 Problem Let f : R→ R, f (1−x) = x2−2. Find f (−2), f (x)
and f ( f (x)).

3.1.9 Problem Let f : Dom( f ) → R be a function. f is said to
have a fixed point at t ∈ Dom( f ) if f (t) = t. Let s : [0;+∞[→ R,
s(x) = x5−2x3+2x. Find all fixed points of s.

3.1.10 Problem Let : R → R, h(x + 2) = 1+ x − x2. Express
h(x−1), h(x), h(x+1) as powers of x.

3.1.11 Problem Let f : R→ R, f (x+ 1) = x2. Find f (x), f (x+ 2)
and f (x−2) as powers of x.

3.1.12 Problem Let h : R→ R be given by h(1− x) = 2x. Find
h(3x).

3.1.13 Problem Consider the polynomial

(1−x2+x4)2003 = a0+a1x+a2x2+ · · ·+a8012x8012.

Find

1. a0
2. a0+a1+a2+ · · ·+a8012
3. a0−a1+a2−a3+ · · ·−a8011+a8012
4. a0+a2+a4+ · · ·+a8010+a8012
5. a1+a3+ · · ·+a8009+a8011

3.1.14 Problem Let f :R→R, be a function such that ∀x∈]0;+∞[,

[ f (x3+1)]
√
x = 5,

find the value of
[

f
(
27+y3

y3

)]
√

27
y

for y ∈]0;+∞[.

3.2 Graphs of Functions and Functions from Graphs
In this section we briefly describe graphs of functions. The bulk of graphing will be taken up in subsequent chapters, as
graphing functions with a given formula is a very tricky matter.

142 Definition The graph of a function f :
Dom( f ) → Target( f )

x "→ f (x)
is the set Γ f = {(x,y)∈R2 : y= f (x)} on the plane.

For ellipsis, we usually say the graph of f , or the graph y= f (x) or the the curve y= f (x).

By the definition of the graph of a function, the x-axis contains the set of inputs and y-axis has the set of outputs. Since in
the definition of a function every input goes to exactly one output, wee see that if a vertical line crosses two or more points of
a graph, the graph does not represent a function. We will call this the vertical line test for a function. See figures 3.4 and 3.5.

At this stage there are very few functions with a given formula and infinite domain that we know how to graph. Let us list
some of them.
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143 Example (Identity Function) Consider the function

Id :
R → R

x "→ x
.

By Theorem 93, the graph of the identity function is a straight line.

144 Example (Absolute Value Function) Consider the function

AbsVal :
R → R

x "→ |x|
.

By Example 108, the graph of the absolute value function is that which appears in figure 3.7.

Figure 3.4: Fails the vertical
line test. Not a function.

Figure 3.5: Fails the vertical
line test. Not a function. Figure 3.6: Id Figure 3.7: AbsVal

145 Example (The Square Function) Consider the function

Sq :
R → R

x "→ x2
.

This function assigns to every real its square. By Theorem 114, the graph of the square function is a parabola, and it is
presented in in figure 3.8.

146 Example (The Square Root Function) Consider the function

Rt :
[0;+∞[ → R

x "→
√
x

.

By Example 117, the graph of the square root function is the half parabola that appears in figure 3.9.

147 Example (Semicircle Function) Consider the function1

Sc :
[−1;1] → R

x "→
√

1− x2
.

By Example 89, the graph of Sc is the upper unit semicircle, which is shewn in figure 3.10.
1Since we are concentrating exclusively on real-valued functions, the formula for Sc only makes sense in the interval [−1;1]. We will examine this more

closely in the next section.
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148 Example (The Reciprocal function) Consider the function2

Rec :
R\{0} → R

x "→
1
x

.

By Example 120, the graph of the reciprocal function is the hyperbola shewn in figure 3.11.

Figure 3.8: Sq Figure 3.9: Rt Figure 3.10: Sc Figure 3.11: Rec

We can combine pieces of the above curves in order to graph piecewise defined functions.

149 Example Consider the function f :R\{−1,1}→ R with assignment rule

f (x) =



















−x if x<−1

x2 if −1< x< 1

x if x> 1

Its graph appears in figure 3.12.

Figure 3.12: Example 149.

The alert reader will notice that, for example, the two different functions

f :
R → R

x "→ x2
g :

R → [0;+∞[

x "→ x2

possess the same graph. It is then difficult to recover all the information about a function from its graph, in particular, it is
impossible to recover its target set. We will now present a related concept in order to alleviate this problem.

150 Definition A functional curve on the plane is a curve that passes the vertical line test. The domain of the functional
curve is the “shadow” of the graph on the x-axis, and the image of the functional curve is its shadow on the y-axis.

2The formula for Rec only makes sense when x '= 0.
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In order to distinguish between finite and infinite sets, we will make the convention that arrow heads in a functional curve
indicate that the curve continues to infinity in te direction of the arrow. In order to indicate that a certain value is not part of
the domain, we will use a hollow dot. Also, in order to make our graphs readable, we will assume that endpoints and dots fall
in lattice points, that is, points with integer coordinates. The following example will elaborate on our conventions.
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-1

0
1

2

3

4
5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 3.13: Example 151:
a.
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Figure 3.14: Example 151:
b.
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Figure 3.15: Example 151:
c.
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Figure 3.16: Example 151:
d.

151 Example Determine the domains and images of the functional curves a,b,c,d given in figures 3.13 through 3.16.

Solution: " Figure 3.13 consists only a finite number of dots. These dots x-coordinates are the set {−4,−2,2,4}
and hence Dom(a) = {−4,−2,2,4}. The dots y-coordinates are the set {−3,−1,1} and so Im (a) = {−3.−
1,1}.

Figure 3.14 has x-shadow on the interval [−3;3[. Notice that x = 3 is excluded since it has an open dot. We
conclude that Dom(b) = [−3;3[. The y-shadow of this set is the interval [−3;1]. Notice that we do include y= 1
since there are points having y-coordinate 1, for example (2,1), which are on the graph. Hence, Im (b) = [−3;1].

The x-shadow of figure 3.15 commences just right of x = −3 and extends to +∞, as we have put an arrow on
the rightmost extreme of the curve. Hence Dom(c) = ]−3 :+∞[. The y-shadow of this curve starts at y= 0 and
continues to +∞, thus Im(c) = [0;+∞[.

We leave to the reader to conclude from figure 3.16 that

Dom(d) = R\{−3,0}= ]−∞;−3[∪ ]−3;0[∪ ]0;+∞[ , Im (d) = ]−∞;2[∪ ]2;4] .

#

Homework

3.2.1 Problem Consider the functional curve d shewn in figure
3.16.

1. Find consecutive integers a,b such that d(−2) ∈ [a;b].

2. Determine d(−3).

3. Determine d(0).

4. Determine d(100).

3.2.2 Problem The signum function is defined as follows:

signum :

R → {−1,0,1}

x "→











+1 if x> 0

0 if x= 0

−1 if x< 0

.

Graph the signum function.

3.2.3 Problem By looking at the graph of the identity function Id,
determine Dom(Id) and Im(Id).
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3.2.4 Problem By looking at the graph of the absolute value func-
tion AbsVal, determine Dom(AbsVal) and Im(AbsVal).

3.2.5 Problem By looking at the graph of the square function Sq,
determine Dom(Sq) and Im(Sq).

3.2.6 Problem By looking at the graph of the square root function
Rt, determine Dom(Rt) and Im(Rt).

3.2.7 Problem By looking at the graph of the semicircle function
Sc, determine Dom(Sc) and Im(Sc).

3.2.8 Problem By looking at the graph of the reciprocal function
Rec, determine Dom(Rec) and Im(Rec).

3.2.9 Problem Graph the function g : R→ R that is piecewise de-
fined by

g(x) =













1
x

if x ∈]−∞;−1[

x if x ∈ [−1;1]

1
x

if x ∈]1;+∞[

3.2.10 Problem Consider the function f : [−4;4]→ [−5;1] whose
graph is made of straight lines, as in figure 3.17. Find a piecewise
formula for f .

1

2

3

4

5

6

-1

-2

-3

-4

-5

-6

1 2 3 4 5 6-1-2-3-4-5-6

L1

L2

L3

Figure 3.17: Problem 3.2.10.

3.3 Natural Domain of an Assignment Rule
Given a formula, we are now interested in determining which possible subsets of R will render the output of the formula also
a real number subset.

152 Definition The natural domain of an assignment rule is the largest set of real number inputs that will give a real number
output of a given assignment rule.

! For the algebraic combinations that we are dealing with, we must then worry about having non-vanishing
denominators and taking even-indexed roots of positive real numbers.

153 Example Find the natural domain of the rule x "→ 1
x2− x−6

.

Solution: " In order for the output to be a real number, the denominator must not vanish. We must have
x2− x−6= (x+2)(x−3) '= 0, and so x '=−2 nor x '= 3. Thus the natural domain of this rule is R\{−2,3}.

#

154 Example Find the natural domain of x "→ 1
x4−16

.

Solution: Since x4−16= (x2−4)(x2+4) = (x+2)(x−2)(x2+4), the rule is undefined when x=−2 or x= 2. The natural
domain is thus R\{−2,+2}.

155 Example Find the natural domain for the rule f (x) =
2

4− |x|
.

Solution: " The denominatormust not vanish, hence x '=±4. The natural domain of this rule is thusR\{−4,4}.

#
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156 Example Find the natural domain of the rule f (x) =
√
x+3

Solution: " In order for the output to be a real number, the quantity under the square root must be positive,
hence x+3≥ 0 =⇒ x≥−3 and the natural domain is the interval [−3;+∞[.
#

157 Example Find the natural domain of the rule g(x) =
2√
x+3

Solution: " The denominator must not vanish, and hence the quantity under the square root must be positive,
therefore x>−3 and the natural domain is the interval ]−3+;∞[.
#

158 Example Find the natural domain of the rule x "→ 4√x2.

Solution: " Since for all real numbers x2 ≥ 0, the natural domain of this rule is R.
#

159 Example Find the natural domain of the rule x "→ 4√−x2.

Solution: " Since for all real numbers−x2 ≤ 0, the quantity under the square root is a real number only when
x= 0, whence the natural domain of this rule is {0}.
#

160 Example Find the natural domain of the rule x "→ 1√
x2
.

Solution: " The denominator vanishes when x= 0. Otherwise for all real numbers, x '= 0, we have x2 > 0. The
natural domain of this rule is thus R\{0}.
#

161 Example Find the natural domain of the rule x "→ 1√
−x2

.

Solution: " The denominator vanishes when x = 0. Otherwise for all real numbers, x '= 0, we have −x2 < 0.
Thus

√
−x2 is only a real number when x = 0, and in that case, the denominator vanishes. The natural domain

of this rule is thus the empty set ∅.
#

162 Example Find the natural domain of the assignment rule

x "→
√
1− x+

1√
1+ x

.

Solution: " We need simultaneously 1− x ≥ 0 (which implies that x ≤ 1) and 1+ x > 0 (which implies that
x>−1), so x ∈]−1;1].
#

163 Example Find the largest subset of real numbers where the assignment rule x "→
√
x2− x−6 gives real number outputs.

Solution: " The quantity x2− x−6= (x+2)(x−3) under the square root must be positive. Studying the sign
diagram



62 Chapter 3

x ∈ ]−∞;−2] [−2;3] [3;+∞[

signum(x+2) = − + +

signum(x−3) = − − +

signum((x+2)(x−2)) = + − +

we conclude that the natural domain of this formula is the set ]−∞;−2]∪ [3;+∞[.
#

164 Example Find the natural domain for the rule f (x) =
1√

x2− x−6
.

Solution: " The denominator must not vanish, so the quantity under the square root must be positive. By the
preceding problem this happens when x ∈]−∞;−2[ ∪ ]3;+∞[. #

165 Example Find the natural domain of the rule x "→
√
x2+1.

Solution: " Since ∀x ∈R we have x2+1≥ 1, the square root is a real number for all real x. Hence the natural
domain is R. #

166 Example Find the natural domain of the rule x "→
√
x2+ x+1.

Solution: " The discriminant of x2 + x+ 1 = 0 is 12− 4(1)(1) < 0. Since the coefficient of x2 is 1 > 0, the
expression x2+ x+1 is always positive, meaning that the required natural domain is all of R.

Aliter: Observe that since

x2+ x+1=

(

x+
1
2

)2
+
3
4
≥
3
4

> 0,

the square root is a real number for all real x. Hence the natural domain is R.
#

Homework

3.3.1 Problem Below are given some assignment rules. Verify that
the accompanying set is the natural domain of the assignment rule.

Assignment Rule Natural Domain

x "→
√

(1−x)(x+3) x ∈ [−3;1].

x "→
√

1−x
x+3

x ∈]−3;1]

x "→
√

x+3
1−x

x ∈ [−3;1[

x "→

√

1
(x+3)(1−x)

x ∈]−3;1[

3.3.2 Problem Find the natural domain for the given assignment
rules.

1. x "→
1

√

1+ |x|

2. x "→ 4
√

5− |x|

3. x "→ 3
√

5− |x|

4. x "→
1

x2+2x+2

5. x "→
1√

x2−2x−2

6. x "→
1

|x−1|+ |x+1|

7. x "→
√
−x

x2−1

8. x "→
√
1−x2
1− |x|

9. x "→
√
x+
√
−x

3.3.3 Problem Below are given some assignment rules. Verify that
the accompanying set is the natural domain of the assignment rule.
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Assignment Rule Natural Domain

x "→
√

x
x2−9

x ∈]−3;0]
⋃

]3;+∞[

x "→
√

−|x| x= 0

x "→
√

−||x|−2| x ∈ {−2,2}

x "→
√

1
x

x ∈]0;+∞[

x "→
√

1
x2

x ∈R\{0}

x "→
√

1
−x

x ∈]−∞;0[

x "→

√

1
−|x|

∅ (the empty set)

x "→
1

x
√
x+1

x ∈]−1;0[
⋃

]0;+∞[

x "→
√
1+x+

√
1−x [−1;1]

3.3.4 Problem Find the natural domain for the rule f (x) =√
x3−12x.

3.3.5 Problem Find the natural domain of the rule x "→
1√

x2−2x−2
.

3.3.6 Problem Find the natural domain for the following rules.

1. x "→
√

−(x+1)2,

2. x "→
1

√

−(x+1)2

3. f (x) =
x1/2√

x4−13x2 +36

4. g(x) =
4
√
3−x√

x4−13x2+36

5. h(x) =
1√

x6−13x4+36x2

6. j(x) =
1√

x5−13x3+36x

7. k(x) =
1

√

|x4−13x2+36|

3.4 Algebra of Functions
167 Definition Let f : Dom( f )→ Target( f ) and g : Dom(g)→ Target(g). Then Dom( f ±g) = Dom( f )∩Dom(g) and
the sum (respectively, difference) function f +g (respectively, f −g) is given by

f ±g :
Dom( f )∩Dom(g) → Target( f ±g)

x "→ f (x)±g(x)
.

In other words, if x belongs both to the domain of f and g, then

( f ±g)(x) = f (x)±g(x).

168 Definition Let f :Dom( f )→R and g :Dom(g)→R. Then Dom( f g) = Dom( f )∩Dom(g) and the product function
f g is given by

f g :
Dom( f )∩Dom(g) → Target( f g)

x "→ f (x) ·g(x)
.

In other words, if x belongs both to the domain of f and g, then

( f g)(x) = f (x) ·g(x).

169 Example Let

f :
[−1;1] → R

x "→ x2+2x
, g :

[0;2] → R

x "→ 3x+2
.

Find

1. Dom( f ±g)

2. Dom( f g)

3. ( f +g)(−1)

4. ( f +g)(1)

5. ( f g)(1)

6. ( f −g)(0)
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7. ( f +g)(2)

Solution: " We have

1. Dom( f ±g) = Dom( f ) ∩ Dom(g) = [−1;1] ∩
[0;2] = [0;1].

2. Dom( f g) is also Dom( f )∩Dom(g) = [0;1].

3. Since−1 '∈ [0;1], ( f +g)(−1) is undefined.

4. ( f +g)(1) = f (1)+g(1) = 3+5= 8.
5. ( f g)(1) = f (1)g(1) = (3)(5) = 15.
6. ( f −g)(0) = f (0)−g(0) = 0−2=−2.
7. Since 2 '∈ [0;1], ( f +g)(2) is undefined.

#

170 Definition Let g : Dom(g)→ R be a function. The support of g, denoted by supp(g) is the set of elements in Dom(g)
where g does not vanish, that is

supp(g) = {x ∈ Dom(g) : g(x) '= 0}.

171 Example Let

g :
R → R

x "→ x3−2x
.

Then x3−2x= x(x−
√
2)(x+

√
2). Thus

supp(g) = R\{−
√
2,0
√
2}.

172 Example Let

g :
[0;1] → R

x "→ x3−2x
.

Then x3−2x= x(x−
√
2)(x+

√
2). Thus

supp(g) = [0;1]\{−
√
2,0
√
2} =]0;1].

173 Definition Let f :Dom( f )→R and g :Dom(g)→R. ThenDom
(
f
g

)

=Dom( f )∩supp(g) and the quotient function

f
g
is given by

f
g
:
Dom( f )∩ supp(g) → Target

(
f
g

)

x "→
f (x)
g(x)

.

In other words, if x belongs both to the domain of f and g and g(x) '= 0, then
(
f
g

)

(x) =
f (x)
g(x)

.

174 Example Let

f :
[−2;3] → R

x "→ x3− x
, g :

[0;5] → R

x "→ x3−2x2
.

Find
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1. supp( f )

2. supp(g)

3. Dom
(
f
g

)

4. Dom
(
g
f

)

5.
(
f
g

)

(2)

6.
(
g
f

)

(2)

7.
(
f
g

)

(1/3)

8.
(
g
f

)

(1/3)

Solution: "

1. As x3− x= x(x−1)(x+1), supp( f ) = [−2;−1[∪]−1;0[∪]0;3]
2. As x3−2x2 = x2(x−2), supp(g) =]0;2[∪]2;5].

3. Dom
(
f
g

)

= Dom( f )∩ supp(g) = [−2;3]∩ (]0;2[∪]2;5]) =]0;2[∪]2;3]

4.
Dom

(
g
f

)

= Dom(g)∩ supp( f ) = [0;5]∩ ([−2;−1[∪]−1;0[∪]0;3])=]0;3]

5.
(
f
g

)

(2) is undefined, as 2 '∈]0;2[∪]2;3].

6.
(
g
f

)

(2) =
g(2)
f (2)

=
0
6

= 0.

7.
(
f
g

)

(1/3) =
− 8
27
− 5
27

=
8
5

8.
(
g
f

)

(1/3) =
− 5
27
− 8
27

=
5
8

#

We are now going to consider “functions of functions.”

175 Definition Let f : Dom( f )→ Target( f ), g : Dom(g)→ Target(g) and letU = {x ∈ Dom(g) : g(x) ∈ Dom( f )}. We
define the composition function of f and g as

f ◦ g :
U → Target( f ◦ g)

x "→ f (g(x))
. (3.1)

We read f ◦ g as “ f composed with g.”

! We haveDom( f ◦ g) = {x ∈Dom(g) : g(x) ∈Dom( f )}. Thus to find Dom( f ◦ g) we find those elements of
Dom(g) whose images are in Dom( f )∩ Im (g)

176 Example Let

f :
{−2,−1,0,1,2} → R

x "→ 2x+1
, g :

{0,1,2,3} → R

x "→ x2−4
.
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1. Find Im ( f ).

2. Find Im (g).

3. Find Dom( f ◦ g).

4. Find Dom(g ◦ f ).

5. Find ( f ◦ g)(0).

6. Find (g ◦ f )(0).

7. Find ( f ◦ g)(2).

8. Find (g ◦ f )(2).

Solution: "

1. We have f (−2) =−3, f (−1) =−1, f (0) = 1, f (1) = 3, f (2) = 5. Hence Im ( f ) = {−3,−1,1,3,5}.
2. We have g(0) =−4, g(1) =−3, g(2) = 0, g(3) = 5. Hence Im(g) = {−4,−3,0,5}.
3. Dom( f ◦ g) = {x ∈ Dom(g) : g(x) ∈ Dom( f )} = {2}.
4. Dom(g ◦ f ) = {x ∈ Dom( f ) : f (x) ∈ Dom(g)} = {0,1}.
5. ( f ◦ g)(0) = f (g(0)) = f (−4), but this last is undefined.
6. (g ◦ f )(0) = g( f (0)) = g(1) =−3.
7. ( f ◦ g)(2) = f (g(2)) = f (0) = 1.
8. (g ◦ f )(2) = g( f (2)) = g(5), but this last is undefined.

#

177 Example Let

f :
R → R

x "→ 2x−3
, g :

R → R

x "→ 5x+1
.

1. Demonstrate that Im ( f ) = R.

2. Demonstrate that Im (g) = R.

3. Find ( f ◦ g)(x).

4. Find (g ◦ f )(x).

5. Is it ever true that ( f ◦ g)(x) = (g ◦ f )(x)?

Solution: "

1. Take b ∈ R. We must shew that ∃x ∈ R such that f (x) = b. But

f (x) = b =⇒ 2x−3= b =⇒ x=
b+3
2

.

Since
b+3
2

is a real number satisfying f
(
b+3
2

)

= b, we have shewn that Im ( f ) = R.

2. Take b ∈ R. We must shew that ∃x ∈ R such that g(x) = b. But

g(x) = b =⇒ 5x+1= b =⇒ x=
b−1
5

.

Since
b−1
5

is a real number satisfying g
(
b−1
5

)

= b, we have shewn that Im (g) = R.

3. We have
( f ◦ g)(x) = f (g(x)) = f (5x+1) = 2(5x+1)−3= 10x−1

4. We have
(g ◦ f )(x) = g( f (x)) = g(2x−3) = 5(2x−3)+1= 10x−14.

(g ◦ f )(x).
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5. If
( f ◦ g)(x) = (g ◦ f )(x)

then we would have
10x−1= 10x−14

which entails that−1=−14, absolute nonsense!

#

! Composition of functions need not be commutative.

178 Example Consider

f :
[−
√
3;
√
3] → R

x "→
√

3− x2
, g :

[−2;+∞[ → R

x "→ −
√
x+2

.

1. Find Im ( f ).

2. Find Im (g).

3. Find Dom( f ◦ g).

4. Find f ◦ g.

5. Find Dom(g ◦ f ).

6. Find g ◦ f .

Solution: "

1. Assume y =
√
3− x2. Then y ≥ 0. Moreover x = ±

√

3− y2. This makes sense only if −
√
3 ≤ y ≤

√
3.

Hence Im ( f ) = [0;
√
3].

2. Assume y = −
√
x+2. Then y ≤ 0. Moreover, x = y2− 2 which makes sense for every real number. This

means that y is allowed to be any negative number and so Im (g) =]−∞;0].
3.

Dom( f ◦ g) = {x ∈ Dom(g) : g(x) ∈ Dom( f )}

= {x ∈ [−2;+∞[:−
√
3≤−

√
x+2≤

√
3}

= {x ∈ [−2;+∞[:−
√
3≤−

√
x+2≤ 0}

= {x ∈ [−2;+∞[: x≤ 1}

= [−2;1]

4. ( f ◦ g)(x) = f (g(x)) = f (−
√
x+2) =

√
1− x.

5.

Dom(g ◦ f ) = {x ∈Dom( f ) : f (x) ∈ Dom(g)}

= {x ∈ [−
√
3;
√
3] :
√
3− x2 ≥−2}

= {x ∈ [−
√
3;
√
3] :
√
3− x2 ≥ 0}

= [−
√
3;
√
3]
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6. (g ◦ f )(x) = g( f (x)) = g(
√
3− x2) =−

√√
3− x2+2.

#

! Notice that Dom( f ◦ g) = [−2;1], although the domain of definition of x "→
√
1− x is ]−∞;1].

179 Example Let

f :
R\{1} → R

x "→
2x
x−1

, g :
]−∞;2] → R

x "→
√
2− x

1. Find Im ( f ).

2. Find Im (g).

3. Find Dom( f ◦ g).

4. Find f ◦ g.

5. Find Dom(g ◦ f ).

6. Find g ◦ f .

Solution: "

1. Assume y=
2x
x−1

, x ∈ Dom( f ) is solvable. Then

y(x−1) = 2x =⇒ yx−2x= y =⇒ x=
y

y−2
.

Thus the equation is solvable only when y '= 2. Thus Im ( f ) = R\{2}.
2. Assume that y =

√
2− x, x ∈ Dom(g) is solvable. Then y ≥ 0 since y =

√
2− x is the square root of a

(positive) real number. All y≥ 0 will render x= 2− y2 in the appropriate range, and so Im (g) = [0;+∞[.
3.

Dom( f ◦ g) = {x ∈ Dom(g) : g(x) ∈ Dom( f )}

= {x ∈]−∞;2] :
√
2− x '= 1}

= ]−∞;1[∪]1;2]

4. ( f ◦ g)(x) = f (g(x)) = f (
√
2− x) =

1√
2− x−1

.

5.

Dom(g ◦ f ) = {x ∈ Dom( f ) : f (x) ∈ Dom(g)}

= {x ∈ R\{1} :
2x
x−1

≤ 2}

= {x ∈ R\{1} :
2

x−1
≤ 0}

= ]−∞;1[

6.

(g ◦ f )(x) = g( f (x)) = g
(
2x
x−1

)

=

√

2−
2x
x−1

=

√

2
1− x

#

Homework
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3.4.1 Problem Let

f :
[−5;3] → R

x "→ x4−16
, g :

[−4;2] → R

x "→ |x|−4
.

Find

1. Dom( f +g)
2. Dom( f g)

3. Dom
(
f
g

)

4. Dom
(
g
f

)

5. ( f +g)(2)
6. ( f g)(2)

7.
(
f
g

)

(2)

8.
(
g
f

)

(2)

9.
(
f
g

)

(1)

10.
(
g
f

)

(1)

3.4.2 Problem Let

f :
{−2,−1,0,1,2} → Z

x "→ 2x
, g :

{0,1,2} → Z

x "→ x2
.

1. Find Im( f ).

2. Find Im(g).

3. Find Dom( f ◦g).

4. Find Dom(g◦ f ).

3.4.3 Problem Let f ,g,h : {1,2,3,4} → {1,2,10,1993} be given
by

f (1) = 1, f (2) = 2, f (3) = 10, f (4) = 1993,

g(1) = g(2) = 2,g(3) = g(4)−1 = 1,

h(1) = h(2) = h(3) = h(4)+1 = 2.

1. Compute ( f +g+h)(3)

2. Compute ( f g+gh+h f )(4).

3. Compute f (1+h(3)).

4. Compute ( f ◦ f ◦ f ◦ f ◦ f )(2)+ f (g(2)+2).

3.4.4 Problem Two functions f ,g : R → R are given by f (x) =
ax + b, g(x) = bx + a with a and b integers. If f (1) = 8 and
f (g(50))−g( f (50)) = 28, find the product ab.

3.4.5 Problem If a,b,c : R → R are functions with a(t) = t −
2,b(t) = t3,c(t) = 5 demonstrate that

(a◦b)(t) = t3−2

(b◦a)(t) = (t−2)3

(b◦c)(t) = 125

(c◦b)(t) = 5

(c◦a)(t) = 5

(a◦b◦c)(t) = 123

(c◦b◦a)(t) = 5

(a◦c◦b)(t) = 3

3.4.6 Problem Let

f :
[2;+∞[ → R

x "→
√
x−2

, g :
[−2;2] → R

x "→
√

4−x2
.

1. Find Im( f ).
2. Find Im(g).
3. Find Dom( f ◦g).
4. Find Dom(g◦ f ).
5. Find ( f ◦g)(x).
6. Find (g◦ f )(x).

3.4.7 Problem Let

f :
[−
√
2;+
√
2[ → R

x "→
√

2−x2
, g :

]−∞;0] → R

x "→ −
√
−x

.

1. Find Im( f ).
2. Find Im(g).
3. Find Dom( f ◦g).
4. Find Dom(g◦ f ).
5. Find ( f ◦g)(x).
6. Find (g◦ f )(x).

3.4.8 Problem Let f ,g,h : R→ R be functions. Prove that their
composition is associative

f ◦ (g◦h) = ( f ◦g)◦h

whenever the given expressions make sense.

3.4.9 Problem Let f : R→ R be the function defined by f (x) =
ax2−

√
2 for some positive a. If ( f ◦ f )(

√
2) = −

√
2 find the value

of a.

3.4.10 Problem Let f :]0 : +∞[→]0 : +∞[, such f (2x) =
2

2+x
.

Find 2 f (x).
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3.4.11 Problem Let f ,g : R \ {1}→ R, with f (x) =
4

x−1
,g(x) =

2x, find all x for which (g◦ f )(x) = ( f ◦g)(x).

3.4.12 Problem Let f : R→ R, f (1−x) = x2. Find ( f ◦ f )(x).

3.4.13 Problem Let f : R \ {−
3
2
}→ R \ {

c
2
},x "→

cx
2x+3

be such

that ( f ◦ f )(x) = x. Find the value of c.

3.4.14 Problem Let f ,g :R→R be functions satisfying for all real
numbers x and y the equality

f (x+g(y)) = 2x+y+5. (3.2)

Find an expression for g(x+ f (y)).

3.5 Iteration and Functional Equations
180 Definition Given an assignment rule x "→ f (x), its iterate at x is f ( f (x)), that is, we use its value as the new input. The
iterates at x

x, f (x), f ( f (x)), f ( f ( f (x))), . . .

are called 0-th iterate, 1st iterate, 2nd iterate, 3rd iterate, etc. We denote the n-th iterate by f [n].

In some particular cases it is easy to find the nth iterate of an assignment rule, for example

a(x) = xt =⇒ a[n](x) = xt
n
,

b(x) = mx =⇒ b[n](x) = mnx,

c(x) = mx+ k =⇒ c[n](x) = mnx+ k
(
mn−1
m−1

)

.

The above examples are more the exception than the rule. Even if its possible to find a closed formula for the n-th iterate some
cases prove quite truculent.

181 Example Let f (x) =
1

1− x
. Find the n-th iterate of f at x, and determine the set of values of x for which it makes sense.

Solution: " We have
f [2](x) = ( f ◦ f )(x) = f ( f (x)) =

1
1− 1

1−x
=
x−1
x

,

f [3](x) = ( f ◦ f ◦ f )(x) = f ( f [2](x))) = f
(
x−1
x

)

=
1

1− x−1
x

= x.

Notice now that f [4](x) = ( f ◦ f [3])(x) = f ( f [3](x)) = f (x) = f [1](x). We see that f is cyclic of period 3, that is,

f [1](x) = f [4](x) = f [7](x) = . . . =
1

1− x
,

f [2](x) = f [5](x) = f [8](x) = . . . =
x−1
x

,

f [3](x) = f [6](x) = f [9](x) = . . . = x.

The formulæ above hold for x '∈ {0,1}. #

182 Definition A functional equation is an equation whose variables range over functions, or more often, assignment rules.

A functional equation problem asks for a formula, or formulæ satisfying certain features.

183 Example Find all the functions g : R→ R satisfying

g(x+ y)+g(x− y)= 2x2+2y2.
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Solution: " If y= 0, then 2g(x) = 2x2, that is, g(x) = x2. Let us verify that g(x) = x2 works. We have

g(x+ y)+g(x− y)= (x+ y)2+(x− y)2 = x2+2xy+ y2+ x2−2xy+ y2 = 2x2+2y2,

from where the only solution is g(x) = x2. #

184 Example Find all functions f : R→ R such that

x2 f (x)+ f (1− x) = 2x− x4.

Solution: " From the given equation,

f (1− x) = 2x− x4− x2 f (x).

Replacing x by 1− x, we obtain

(1− x)2 f (1− x)+ f (x) = 2(1− x)− (1− x)4.

This implies that

f (x) = 2(1− x)− (1− x)4− (1− x)2 f (1− x) = 2(1− x)− (1− x)4− (1− x)2(2x− x4− x2 f (x)),

which in turn, gives

f (x) = 2(1− x)− (1− x)4−2x(1− x)2+ x4(1− x)2+(1− x)2x2 f (x).

Solving now for f (x) we gather that

f (x) =
2(1− x)− (1− x)4−2x(1− x)2+ x4(1− x)2

1− (1− x)2x2

=
(1− x)(2− (1− x)3−2x(1− x)+ x4(1− x)

)
(1− (1− x)x)(1+(1− x)x)

=
(1− x)(2− (1−3x+3x2− x3)−2x+2x2+ x4− x5)

(1− x+ x2)(1+ x− x2)

=
(1− x)(1+ x− x2+ x3+ x4− x5)

(1− x+ x2)(1+ x− x2)

=
(1− x)(1+ x)(1− x+ x2)(1+ x− x2)

(1− x+ x2)(1+ x− x2)

= 1− x2.

We now check. If f (x) = 1− x2 then

x2 f (x)+ f (1− x) = x2(1− x2)+1− (1− x)2 = x2− x4+1−1+2x− x2= 2x− x4,

from f (x) = 1− x2 is the only such solution.

#

We continue with, perhaps, the most famous functional equation.

185 Example (Cauchy’s Functional Equation) Suppose f : Q→ Q satisfies f (x+ y) = f (x) + f (y). Prove that ∃c ∈ Q
such that f (x) = cx, ∀x ∈Q.
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Solution: " Letting y= 0 we obtain f (x) = f (x)+ f (0), and so f (0) = 0. If k is a positive integer we obtain

f (kx) = f (x+(k−1)x)

= f (x)+ f ((k−1)x)

= f (x)+ f (x)+ f ((k−2)x) = 2 f (x)+ f ((k−2)x)

= 2 f (x)+ f (x)+ f ((k−3)x) = 3 f (x)+ f ((k−3)x)
...

= · · · = k f (x)+ f (0) = k f (x).

Letting y=−x we obtain 0= f (0) = f (x)+ f (−x) and so f (−x) =− f (x). Hence f (nx) = n f (x) for n ∈ Z. Let
x ∈ Q, which means that x =

s
t
for integers s,t with t '= 0. This means that tx = s ·1 and so f (tx) = f (s ·1) and

by what was just proved for integers, t f (x) = s f (1). Hence f (x) =
s
t
f (1) = x f (1). Since f (1) is a constant, we

may put c= f (1). Thus f (x) = cx for rational numbers x. #

Homework

3.5.1 Problem Let f [1](x) = f (x) = x+ 1, f [n+1] = f ◦ f [n],n ≥ 1.
Find a closed formula for f [n]

3.5.2 Problem Let f [1](x) = f (x) = 2x, f [n+1] = f ◦ f [n],n≥ 1. Find
a closed formula for f [n]

3.5.3 Problem Find all the assignment rules f that satisfy f (xy) =
y f (x).

3.5.4 Problem Find all the assignment rules f for which

f (x)+2 f
(
1
x

)

= x.

3.5.5 Problem Find all functions f : R\{−1}→ R such that

( f (x))2 · f
(
1−x
1+x

)

= 64x.

3.5.6 Problem An assignment rule f is said to be an involution if for
all x for which f (x) and f ( f (x)) are defined we have f ( f (x)) = x.

Prove that a(x) =
1
x
is an involution for x '= 0.

3.5.7 Problem Prove that f (x) =
√
1−x2 is an involution for 0 ≤

x≤ 1.

3.5.8 Problem Let f satisfy f (n+1) = (−1)n+1n−2 f (n),n ≥ 1 If
f (1) = f (1001) find f (1)+ f (2)+ f (3)+ · · ·+ f (1000).

3.5.9 Problem Let f : R→ R satisfy

f (1) = 1, ∀x ∈R f (x+3)≥ f (x)+3, f (x+1)≤ f (x)+1.

Put g(x) = f (x)−x+1. Determine g(2008).

3.5.10 Problem If f (a) f (b) = f (a+ b) ∀ a,b ∈ R and f (x) >
0 ∀ x ∈R, find f (0). Also, find f (−a) and f (2a) in terms of f (a).

3.6 Injections and Surjections
186 Definition A function

f :
Dom( f ) → Target( f )

a "→ f (a)

is said to be injective or one-to-one if (a1,a2) ∈ (Dom( f ))2,

a1 '= a2 =⇒ f (a1) '= f (a2).

That is,
f (a1) = f (a2) =⇒ a1 = a2.
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f is said to be surjective or onto if Target( f ) = Im( f ). That is, if (∀b ∈ B) (∃a ∈ A) such that f (a) = b. f is bijective if it is
both injective and surjective. The number a is said to the the pre-image of b.

A function is thus injective if different inputs result in different outputs, and it is surjective if every element of the target set is
hit. Figures 3.18 through 3.21 present various examples.

Figure 3.18: Injective, not
surjective.

Figure 3.19: Surjective, not
injective.

Figure 3.20: Neither injec-
tive nor surjective. Figure 3.21: Bijective.

It is apparent from figures 3.18 through 3.21 that if the domain and the target set of a function are finite, then there are
certain inequalities that must be met in order for the function to be injective, surjective or bijective. We make the precise
statement in the following theorem.

187 Theorem Let f : A→ B be a function, and let A and B be finite, with A having n elements, and and B m elements. If f is
injective, then n≤ m. If f is surjective then m≤ n. If f is bijective, then m= n. If n≤ m, then the number of injections from
A to B is

m(m−1)(m−2) · · ·(m−n+1).

Proof: Let A= {x1,x2, . . . ,xn} and B= {y1,y2, . . . ,ym}.

If f were injective then f (x1), f (x2), . . . , f (xn) are all distinct, and among the yk. Hence n≤m. In this case, there
are m choices for f (x1), m−1 choices for f (x2), . . . , m−n+1 choices for f (xn). Thus there are

m(m−1)(m−2) · · ·(m−n+1)

injections from A to B.

If f were surjective then each yk is hit, and for each, there is an xi with f (xi) = yk. Thus there are at least m
different images, and so n≥ m. ❑

To find the number of surjections from a finite set to a finite set we need to know about Stirling numbers and inclusion-
exclusion, and hence, we refer the reader to any good book in Combinatorics.

188 Example Let A = {1,2,3} and B = {4,5,6,7}. How many functions are there from A to B? How many functions are
there from B to A? How many injections are there from A to B? How many surjections are there from B to A?

Solution: " There are 4 ·4 ·4= 64 functions from A to B, since there are 4 possibilities for the image of 1, 4 for
the image of 2, and 4 for the image of 3. Similarly, there are 3 ·3 ·3 ·3= 81 functions from B to A.

By Theorem 187, there are
4 ·3 ·2= 24

injections from A to B.

The 34 functions from B to A come in three flavours: (i) those that are surjective, (ii) those that map to exactly
two elements of A, and (iii) those that map to exactly one element of A.
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Take a particular element of A, say 1 ∈ A. There are 24 functions from B to {2,3}. Notice that some of these may
map to the whole set {2,3} or they may skip an element. Coupling this with the 1 ∈ A, this means that there are
24 functions from B to A that skip the 1 and may or may not skip the 2 or the 3. Since there is nothing holy about
choosing 1 ∈ A, we conclude that there are 3 ·24 from B to A that skip either one or two elements of A.

Now take two particular elements of A, say {1,2} ⊆ A. There are 14 functions from B to {3}. Since there are
three 2-element subsets in A—namely {1,2}, {1,3}, and {2,3}—this means that there are 3 ·14 functions from B
to A that map precisely into one element of A.

To find the number of surjections from B to A we weed out the functions that skip elements. In considering the
difference 34−3 ·24, we have taken out all the functions that miss one or two elements of A, but in so doing, we
have taken out twice those that miss one element. Hence we put those back in and we obtain

34−3 ·24+3 ·14 = 36

surjections from B to A. #

! It is easy to see that a graphical criterion for a function to be injective is that every horizontal line crossing
the function must meet it at most one point. See figures 3.22 and 3.23.

Figure 3.22: Passes horizontal line test: injective. Figure 3.23: Fails horizontal line test: not- injective.

189 Example The a :
R → R

x "→ x2
is neither injective nor surjective. For example, a(−2) = a(2) = 4 but−2 '= 2, and there

is no x∈Rwith a(x)=−1. The function b :
R → [0;+∞[

x "→ x2
is surjective but not injective. The function c :

[0;+∞[ → R

x "→ x2

is injective but not surjective. The function d :
[0;+∞[ → [0;+∞[

x "→ x2
is bijective.

Given a formula, it is particularly difficult to know in advance what it set of outputs is going to be. This is why when we
talk about function, we specify the target set to be a canister for every possible value. The next few examples shew how to
find the image of a formula in a few easy cases.

190 Example Let f : R→ R, f (x) = x2+2x+3. Determine Im( f ).

Solution: " Observe that

x2+2x+3= x2+2x+1+2= (x+1)2+2≥ 2,
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since the square of every real number is positive. Since (x+ 1)2 could be made as arbitrarily close to 0 as
desired (upon taking values of x close to −1), and can also be made as large as desired, we conclude that
Im ( f ) ! [2;+∞[. Now, let a ∈ [2;+∞[. Then

x2+2x+3= a ⇐⇒ (x+1)2+2= a ⇐⇒ x=−1±
√
a−2.

Since a≥ 2,
√
a−2∈R and x ∈R. This means that [2;+∞[ ! Im ( f ) and so we conclude that Im ( f ) = [2 :+∞[.

#

191 Example Let f : R\{1}→ R, f (x) =
2x
x−1

. Determine Im( f ).

Solution: " Observe that
2x
x−1

= 2+
2

x−1
'= 2

since
2

x−1
never vanishes for any real number x. We will shew that Im ( f ) = R\{2}. For let a '= 2. Then

2x
x−1

= a =⇒ 2x= ax−a =⇒ x(2−a) =−a =⇒ x=
a

a−2
.

But if a '= 2, then x ∈ R and so we conclude that Im ( f ) = R\{2}. #

192 Example Consider the function f :
x →

x−1
x+1

A "→ B
, where A is the domain of definition of f .

1. Determine A.

2. Determine B so that f be surjective.

3. Demonstrate that f is injective.

Solution: " The formula f (x) =
x−1
x+1

outputs real numbers for all values of x except for x = −1, whence
A= R\{−1}.
Now,

x−1
x+1

= 1+
2

x−1
'= 1,

since
2

x−1
never vanishes. If a '= 1 then

x−1
x+1

= a =⇒ ax−a= x+1 =⇒ x(a−1) = 1+a =⇒ x=
1+a
1−a

,

which is a real number, since a '= 1. It follows that Im ( f ) = R\{1}.
To demonstrate that f is injective, we observe that

f (a)= f (b) =⇒
a−1
a+1

=
b−1
b+1

=⇒ (a−1)(b+1)= (a+1)(b−1) =⇒ ab+a−b= ab−a+b =⇒ 2a= 2b =⇒ a= b,

from where the function is indeed injective.
#

193 Example Prove that

h :
R → R

x "→ x3

is a bijection.
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Solution: " Assume h(b) = h(a). Then

h(a) = h(b) =⇒ a3 = b3

=⇒ a3−b3 = 0

=⇒ (a−b)(a2+ab+b2) = 0

Now,

b2+ab+a2 =
(

b+
a
2

)2
+
3a2

4
.

This shews that b2+ab+a2 is positive unless both a and b are zero. Hence b−a= 0 in all cases. We have shewn
that h(b) = h(a) =⇒ b= a, and the function is thus injective.

To prove that h is surjective, we must prove that (∀ b ∈ R) (∃a) such that h(a) = b. We choose a so that a= b1/3.
Then

h(a) = h(b1/3) = (b1/3)3 = b.

Our choice of a works and hence the function is surjective. #

194 Example Prove that f :
R\{1} → R

x "→
x1/3

x1/3−1

is injective but not surjective.

Solution: " We have

f (a) = f (b) =⇒
a1/3

a1/3−1
=

b1/3

b1/3−1

=⇒ a1/3b1/3−a1/3 = a1/3b1/3−b1/3

=⇒ −a1/3 = −b1/3

=⇒ a = b,

whence f is injective. To prove that f is not surjective assume that f (x) = b,b ∈ R. Then

f (x) = b =⇒
x1/3

x1/3−1
= b =⇒ x=

b3

(b−1)3
.

The expression for x is not a real number when b= 1, and so there is no real x such that f (x) = 1. #

195 Example Find the image of the function

f :
R → R

x "→
x−1
x2+1

Solution: " First observe that f (x) = 0 has the solution x= 1. Assume b ∈ R, b '= 0, with f (x) = b. Then

x−1
x2+1

= b =⇒ bx2− x+b+1= 0.

Completing squares,

bx2− x+b+1= b
(

x2−
x
b

)

+b+1= b
(

x2−
x
b

+
1
4b2

)

+b+1−
1
4b

= b
(

x−
1
2b

)2
+
−1+4b+4b2

4b
.
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Hence

bx2− x+b+1= 0 ⇐⇒ b
(

x−
1
2b

)2
=
1−4b−4b2

4b
⇐⇒ x=

1
2
±
√
1−4b−4b2

2b
.

We must in turn investigate the values of b for which b '= 0 and 1−4b−4b2≥ 0. Again, completing squares

1−4b−4b2=−4
(

b2+b
)

+1=−4
(

b2+b+
1
4

)

+2= 2− (2b+1)2 ==
(√
2−2b−1

)(√
2+2b+1

)

.

A sign diagram then shews that 1−4b−4b2≥ 0 for

b ∈

[

−
1
2
−
√
2
2
;−
1
2

+

√
2
2

]

,

and so

Im ( f ) =

[

−
1
2
−
√
2
2
;−
1
2

+

√
2
2

]

.

#

Homework

3.6.1 Problem Prove that

g :
R → R

s "→ 2s+1

is a bijection.

3.6.2 Problem Prove that h : R→ R given by h(s) = 3− s is a bi-
jection.

3.6.3 Problem Prove that g :R→R given by g(x) = x1/3 is a bijec-
tion.

3.6.4 Problem Prove that f :
R\{1} → R\{2}

x "→
2x
x+1

is surjective

but that g :
R\{1} → R

x "→
2x
x+1

is not surjective.

3.6.5 Problem Classify each of the following as injective, surjec-
tive, bijective or neither.

1. f : R→ R, x "→ x4

2. f : R→ {1}, x "→ 1

3. f : {1,2,3}→ {a,b}, f (1) = f (2) = a, f (3) = b

4. f : [0;+∞[→ R, x "→ x3

5. f : R→ R, x "→ |x|

6. f : [0;+∞[→ R, x "→ −|x|

7. f : R→ [0;+∞[, x "→ |x|

8. f : [0;+∞[→ [0;+∞[, x "→ x4

3.6.6 Problem Let f : E → F,g : F → G be two functions. Prove
that if g◦ f is surjective then g is surjective.

3.6.7 Problem Let f : E → F,g : F → G be two functions. Prove
that if g◦ f is injective then f is injective.

3.7 Inversion
Let S! R. Recall that Id S is the identity function on S, that is , Id S : S→ S withId S(x) = x.

196 Definition Let A×B⊆ R2. A function f : A→ B is said to be right invertible if there is a function g : B→ A, called the
right inverse of f such that f ◦ g= Id B. In the same fashion, f is said to be left invertible if there exists a function h : B→ A
such that h ◦ f = Id A. A function is invertible if it is both right and left invertible.
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197 Theorem Let f : A→ B be right and left invertible. Then its left inverse coincides with its right inverse.

Proof: Let g,h : B→ A be the respective right and left inverses of f . Using the associativity of compositions,

( f ◦ g) = (Id B) =⇒ h ◦ ( f ◦ g) = h ◦ Id B =⇒ (h ◦ f )◦ g= h ◦ Id B =⇒ (Id A)◦ g= h ◦ Id B =⇒ g= h.

❑

198 Corollary (Uniqueness of Inverses) If f : A→ B is invertible, then its inverse is unique.

Proof: Let f have the two inverses s,t : B→ A. In particular, s would be a right inverse and t would be a left
inverse. By the preceding theorem, these two must coincide. ❑

199 Definition If f : A→ B is invertible, then its inverse will be denoted by f−1 : B→ A.

!We must alert the reader that f−1 does not denote the reciprocal (multiplicative inverse) of f .

200 Theorem Let f : A→ B and g :C→ A be invertible. Then the composition function f ◦ g :C→ B is also invertible and

( f ◦ g)−1 = g−1 ◦ f−1.

Proof: By the uniqueness of inverses, f ◦ g may only have one inverse, which is, by definition, ( f ◦ g)−1. This
means that any other function that satisfies the conditions of being an inverse of f ◦ g must then by default be the
inverse of f ◦ g. We have,

(g−1 ◦ f−1)◦ ( f ◦ g) = g−1 ◦ ( f−1 ◦ f )◦ g= g−1 ◦ Id A ◦ g= g−1 ◦ g= Id C.

In the same fashion,

( f ◦ g)◦ (g−1◦ f−1) = f ◦ (g ◦ g−1)◦ f−1 = f ◦ Id A ◦ f−1 = f ◦ f−1 = Id B.

The theorem now follows from the uniqueness of inverses.❑

201 Example Let f :
x →

2x
x−1

R\{1} "→ R\{2}
. Demonstrate that g :

x →
x

x−2

R\{2} "→ R\{1}
is the inverse of f .

Solution: " Let x ∈ R\{2}. We have

( f ◦ g)(x) = f (g(x)) =
2g(x)
g(x)−1

=

2x
x−2
x

x−2
−1

=
2x

x− (x−2)
= x,

from where g is a right inverse of f . In a similar manner, x ∈ R\{2},

(g ◦ f )(x) = g( f (x)) =
f (x)

f (x)−2
=

2x
x−1
2x
x−1

−2
=

2x
2x−2(x−1)

= x,

whence g is a left inverse of f . #

Consider the functions u : {a,b,c}→ {x,y,z} and v : {x,y,z}→ {a,b,c} as given by diagram 3.24. It is clear the v undoes
whatever u does. Furthermore, we observe that u and v are bijections and that the domain of u is the image of v and vice-versa.
This example motivates the following theorem.
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202 Theorem A function f : A→ B is invertible if and only if it is a bijection.

Proof: Assume first that f is invertible. Then there is a function f−1 : B→ A such that

f ◦ f−1 = Id B and f−1 ◦ f = Id A. (3.3)

Let us prove that f is injective and surjective. Let s,t be in the domain of f and such that f (s) = f (t). Applying
f−1 to both sides of this equality we get ( f−1 ◦ f )(s) = ( f−1 ◦ f )(t). By the definition of inverse function, ( f−1 ◦
f )(s) = s and ( f−1 ◦ f )(t) = t. Thus s = t. Hence f (s) = f (t) =⇒ s = t implying that f is injective. To prove
that f is surjective we must shew that for every b∈ f (A) ∃a ∈ A such that f (a) = b.We take a= f−1(b) (observe
that f−1(b) ∈ A). Then f (a) = f ( f−1(b)) = ( f ◦ f−1)(b) = b by definition of inverse function. This shews that f
is surjective. We conclude that if f is invertible then it is also a bijection.

Assume now that f is a bijection. For every b ∈ B there exists a unique a such that f (a) = b. This makes the rule
g : B→ A given by g(b) = a a function. It is clear that g◦ f = Id A and f ◦ g= Id B. We may thus take f−1 = g.
This concludes the proof. ❑

a
b

c
x
y

z

u

x
y

z
a
b

c

v

Figure 3.24: A function and its inverse.

We will now give a few examples of how to determine the assignment rule of the inverse of a function.

203 Example Assume that the function

f :
R\{−1} → R\{1}

x "→
x−1
x+1

is a bijection. Determine its inverse.

Solution: " Put
x−1
x+1

= y

and solve for x:

x−1
x+1

= y =⇒ x−1= yx+ y =⇒ x− yx= 1+ y =⇒ x(1− y) = 1+ y =⇒ x=
1+ y
1− y

.

Now, exchange x and y: y=
1+ x
1− x

. The desired inverse is

f−1 :
R\{1} → R\{−1}

x "→
1+ x
1− x

.

#
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204 Example Assume that the function

f :
R → R

x "→ (x−2)3+1

is a bijection. Determine its inverse.

Solution: " Put
(x−2)3+1= y

and solve for x:

(x−2)3+1= y =⇒ (x−2)3 = y−1 =⇒ x−2= 3
√

y−1 =⇒ x= 3
√

y−1+2.

Now, exchange x and y: y= 3√x−1+2. The desired inverse is

f−1 :
R → R

x "→ 3√x−1+2
.

#

! Since by Theorem 107, (x, f (x)) and ( f (x),x) are symmetric with respect to the line y = x, the graph of a
function f is symmetric with its inverse with respect to the line y= x. See figures 3.25 through 3.27.

Figure 3.25: Function and its inverse. Figure 3.26: Function and its inverse. Figure 3.27: Function and its inverse.

205 Example Consider the functional curve in figure 3.28.

1. Determine Dom( f ).

2. Determine Im ( f ).

3. Draw the graph of f−1.

4. Determine f (+5).

5. Determine f−1(−2).

6. Determine f−1(−1).

Solution: "

1. [−5;5]
2. [−3;3]
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3. To obtain the graph, we look at the endpoints of lines on the graph of f and exchange their coordinates.
Thus the endpoints (−5,−3), (−3,−2), (0,−1), (1,1), (5,3) on the graph of f now form the endpoints
(−3,−5), (−2,−3), (−1,0), (1,1), and (3,5) on the graph of f−1. The graph appears in figure 3.29 below.

4. f (+5) = 3.
5. f−1(−2) =−3.
6. f−1(−1) = 0.

#
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Figure 3.28: f for example 205.
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Figure 3.29: f−1 for example 205.

206 Example Consider the formula f (x)= x2+4x+5. Demonstrate that f is injective in [−2;+∞[ and determine f ([−2;+∞[).
Then, find the inverse of

f :
[−2;+∞[ → f ([−2;+∞[)

x "→ x2+4x+5
.

Solution: " Observe that x2+4x+5= (x+2)2+1. Now, if a ∈ [−2;+∞[ and b ∈ [−2;+∞[, then

f (a) = f (b) =⇒ (a+2)2+1= (b+2)2+1 =⇒ (a+2)2 = (b+2)2.

As a+2≥ 0 and b+2≥ 0, we have

(a+2)2 = (b+2)2 =⇒ a+2= b+2 =⇒ a= b,

whence f is injective in [−2;+∞[.
We have f (x) = (x+2)2+1≥ 1. We will shew that f ([−2;+∞[ = [1;+∞[. Let b ∈ [1;+∞[. Solving for x:

f (x) = b =⇒ (x+2)2+1= b =⇒ (x+2)2 = b−1.

As b−1≥ 0,
√
b−1 is a real number and thus

x=−2+
√
b−1

is a real number with x≤−2. We deduce that f ([−2;+∞[) = [1;+∞[.
Since

f :
[−2;+∞[ → [1;+∞[

x "→ x2+4x+5
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is a bijection, it is invertible. To find f−1, we solve

x2+4x+5= y =⇒ (x+2)2+1= y =⇒ x=−2+
√

y−1,

where we have taken the positive square root, since x≥−2. Exchanging x and y we obtain y=−2+
√
x−1. We

deduce that the inverse of f is

f−1 :
[1;+∞[ → [−2;+∞[

x "→ −2+
√
x−1

.

#

! In the same fashion it is possible to demonstrate that

g :
]−∞;−2] → [1;+∞[

x "→ x2+4x+5

bijective is, with inverse

g−1 :
[1;+∞[ → ]−∞;−2]

x "→ −2−
√
x−1

.

Homework

3.7.1 Problem Let

c :
R\{−2} → R\{1}

x "→
x

x+2

.

Prove that c is bijective and find the inverse of c.

3.7.2 Problem Assume that f : R→ R is a bijection, where f (x) =
2x3+1. Find f−1(x).

3.7.3 Problem Assume that f : R \ {1} → R \ {1} is a bijection,

where f (x) = 3

√

x+2
x−1

. Find f−1.

3.7.4 Problem Let f and g be invertible functions satisfying

f (1) = 2, f (2) = 3, f (3) = 1,

g(1) =−1, g(2) = 3, g(4) =−2.
Find ( f ◦g)−1(1).

3.7.5 Problem Consider the formula f : x "→ x2−4x+5. Find two
intervals I1 and I2 with R = I1∪ I2 and I1 ∩ I2 consisting on exactly
one point, such that f be injective on the restrictions to each interval
f
∣
∣
∣
I1
and f

∣
∣
∣
I2
. Then, find the inverse of f on each restriction.

3.7.6 Problem Consider the function f : [−5;5] → [−3;5] whose
graph appears in figure 3.30, and which is composed of two lines.

Observe that f passes the horizontal line test, that it is surjective,
and hence invertible. .

1. Find a formula for f and f−1 in [−5;0].
2. Find a formula for f and f−1 in [0;5].

3. Draw the graph of f−1.
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Figure 3.30: Problem 3.7.6.

3.7.7 Problem Consider the rule

f (x) =
1

3√x5−1
.

1. Find the natural domain of f .
2. Find the inverse assignment rule f−1.

3. Find the image of the natural domain of f and the natural do-
main of f−1.

4. Conclude.
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3.7.8 Problem Find all the real solutions to the equation

x2−
1
4

=

√

x+
1
4
.

3.7.9 Problem Let f ,g,h : {1,2,3,4} → {1,2,10,1993} be given
by f (1) = 1, f (2) = 2, f (3) = 10, f (4) = 1993,g(1) = g(2) =
2,g(3) = g(4)−1 = 1,h(1) = h(2) = h(3) = h(4)+1 = 2.

1. Is f invertible? Why? If so, what is f−1( f (h(4)))?
2. Is g one-to-one? Why?

3.7.10 Problem Given g :R→R, g(x) = 2x+8 and f :R\{−2}→

R\{0}, f (x) =
1

x+2
find (g◦ f−1)(−2).

3.7.11 Problem Prove that t :
]−∞;1] → [0;+∞[

x "→
√
1−x

is a bijec-

tion and find t−1.

3.7.12 Problem Let f : R→ R, f (x) = ax+b. For which parame-
ters a and b is f = f−1?

3.7.13 Problem Prove that if ab '= −4 and f : R \ {2/b} → R \

{2/b}, f (x) =
2x+a
bx−2

then f = f−1.

3.7.14 Problem Let f : [0;+∞[→ [0;+∞[be given by

f (x) =
√

x+
√
x.

Demonstrate that f is bijective and that its inverse is

f−1 : [0;+∞[→ [0;+∞[ , f−1(x) =
1−
√
1+4x2
2

+x2.

3.7.15 Problem Demonstrate that

f : R→ [−1;1] , f (x) =
3
√
1+x− 3

√
1−x

3
√
1+x+ 3

√
1−x

,

is bijective and that its inverse is

f−1 : [−1;1]→ R, f−1(x) =
x(x2+3)
1+3x2

.

3.7.16 Problem Demonstrate that

f :
[

−
1
4
;+∞

[

→ ]−1;1] , f (x) =
1−
√
1+4x

1+
√
1+4x

,

is bijective and that its inverse is

f−1 : ]−1;1]→
[

−
1
4
;+∞

[

, f−1(x) =−
x

(1+x)2
.

3.7.17 Problem Demonstrate that

f : R→ R, f (x) =
3
√

x+
√

x2+1+
3
√

x−
√

x2+1,

is bijective and that its inverse is

f−1 : R→ R, f−1(x) =
x3+3x
2

.

3.7.18 Problem Consider the function f : R→ R, with

f (x) =








2x if x≤ 0

x2 if x> 0

whose graph appears in figure 3.31.

1. Is f invertible?
2. If the previous answer is affirmative, draw the graph of f−1.

3. If f is invertible, find a formula for f−1.
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Figure 3.31: Problem 3.7.18.

3.7.19 Problem Demonstrate that f : [0;1]→ [0;1], with

f (x) =









x if x ∈Q∩ [0;1]

1−x if x ∈ (R\Q)∩ [0;1]

is bijective and that f = f−1.

3.7.20 Problem Prove, without using a calculator, that

9
∑
k=1

(
(
k
10

)2
+

√

k
10

)

< 9.5

3.7.21 Problem Verify that the functions below, with their domains
and images, have the claimed inverses.

Assignment Rule Natural Domain Image Inverse

x "→
√
2−x ]−∞;2] [0;+∞[ x "→ 2−x2

x "→
1√
2−x

]−∞;2[ ]0;+∞[ x "→ 2−
1
x2

x "→
2+x3

2−x3
R\{ 3√2} R\{−1} x "→ 3

√

2x−2
x+1

x "→
1

x3−1
R\{1} R\{0} x "→ 3

√

1+
1
x



4 Transformations of the Graph of Functions

4.1 Translations
In this section we study how several rigid transformations affect both the graph of a function and its assignment rule.

207 Theorem Let f be a function and let v and h be real numbers. If (x0,y0) is on the graph of f , then (x0,y0 + v) is on
the graph of g, where g(x) = f (x) + v, and if (x1,y1) is on the graph of f , then (x1− h,y1) is on the graph of j, where
j(x) = f (x+h).

Proof: Let Γ f ,Γg,Γ j denote the graphs of f ,g, j respectively.

(x0,y0) ∈ Γ f ⇐⇒ y0 = f (x0) ⇐⇒ y0+ v= f (x0)+ v ⇐⇒ y0+ v= g(x0) ⇐⇒ (x0,y0+ v) ∈ Γg.

Similarly,

(x1,y1) ∈ Γ f ⇐⇒ y1 = f (x1) ⇐⇒ y1 = f (x1−h+h) ⇐⇒ y1 = j(x1−h) ⇐⇒ (x1−h,y1) ∈ Γ j.

❑

208 Definition Let f be a function and let v and h be real numbers. We say that the curve y= f (x)+v is a vertical translation
of the curve y= f (x). If v> 0 the translation is v up, and if v< 0, it is v units down. Similarly, we say that the curve y= f (x+h)
is a horizontal translation of the curve y= f (x). If h> 0, the translation is h units left, and if h < 0, then the translation is h
units right.

Given a functional curve, we expect that a translation would somehow affect its domain and image.
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Figure 4.1: y= f (x).
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Figure 4.2: y= f (x)+1.
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Figure 4.3: y= f (x+1).
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Figure 4.4:
y= f (x+1)+1.

209 Example Figures 4.2 through 4.4 shew various translations of f : [−4;4]→ [−2;1] in figure 4.1. Its translation a :
[−4;4]→ [−1;2] one unit up is shewn in figure 4.2. Notice that we have simply increased the y-coordinate of every point on
the original graph by 1, without changing the x-coordinates. Its translation b : [−5;3]→ [−2;1] one unit left is shewn in figure
4.3. Its translation c : [−5;3]→ [−1;2] one unit up and one unit left is shewn in figure 4.4. Notice how the domain and image
of the original curve are affected by the various translations.

210 Example Consider

f :
R → R

x "→ x2
.

84
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Figures 4.5, 4.6 and 4.7 shew the vertical translation a 3 units up and the vertical translation b 3 units down, respectively.
Observe that

a :
R → R

x "→ x2+3
, b :

R → R

x "→ x2−3
.

Figures 4.8 and 4.9, respectively shew the horizontal translation c 3 units right, and the horizontal translation d 3 units left.
Observe that

c :
R → R

x "→ (x−3)2
, d :

R → R

x "→ (x+3)2
.

Figure 4.10, shews g, the simultaneous translation 3 units left and down. Observe that

g :
R → R

x "→ (x+3)3−3
.

Figure 4.5:
y= f (x) = x2

Figure 4.6:
y= x2+3

Figure 4.7:
y= x2−3

Figure 4.8:
y= (x−3)2

Figure 4.9:
y= (x+3)2

Figure 4.10:
y =
(x+3)2−3

211 Example If g(x) = x (figure 4.11), then figures , 4.12 and 4.13 shew vertical translations 3 units up and 3 units down,
respectively. Notice than in this case g(x+ t) = x+ t = g(x)+ t, so a vertical translation by t units has exactly the same graph
as a horizontal translation t units.

Figure 4.11: y= g(x) = x
Figure 4.12: y = g(x)+ 3 =
x+3

Figure 4.13: y = g(x)− 3 =
x−3
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Homework

4.1.1 Problem Graph the following curves:

1. y= |x−2|+3

2. y= (x−2)2+3

3. y=
1

x−2
+3

4. y=
√
4−x2+1

4.1.2 Problem What is the equation of the curve y= f (x) = x3−
1
x

after a successive translation one unit down and two units right?

4.1.3 Problem Suppose the curve y= f (x) is translated a units ver-
tically and b units horizontally, in this order. Would that have the
same effect as translating the curve b units horizontally first, and
then a units vertically?

4.2 Distortions
212 Theorem Let f be a function and let V '= 0 and H '= 0 be real numbers. If (x0,y0) is on the graph of f , then (x0,Vy0)
is on the graph of g, where g(x) = V f (x), and if (x1,y1) is on the graph of f , then

(x1
H

,y1
)

is on the graph of j, where
j(x) = f (Hx).

Proof: Let Γ f ,Γg,Γ j denote the graphs of f ,g, j respectively.

(x0,y0) ∈ Γ f ⇐⇒ y0 = f (x0) ⇐⇒ Vy0 =V f (x0) ⇐⇒ Vy0 = g(x0) ⇐⇒ (x0,Vy0) ∈ Γg.

Similarly,

(x1,y1) ∈ Γ f ⇐⇒ y1 = f (x1) ⇐⇒ y1 = f
(x1
H

·H
)

⇐⇒ y1 = j
( x1
H

)

⇐⇒
(x1
H

,y1
)

∈ Γ j.

❑

213 Definition Let V > 0, H > 0, and let f be a function. The curve y = V f (x) is called a vertical distortion of the curve
y = f (x). The graph of y = V f (x) is a vertical dilatation of the graph of y = f (x) if V > 1 and a vertical contraction if
0<V < 1. The curve y= f (Hx) is called a horizontal distortion of the curve y= f (x) The graph of y= f (Hx) is a horizontal
dilatation of the graph of y= f (x) if 0< H < 1 and a horizontal contraction if H > 1.

214 Example Consider the function

f :
[−4;4] → [−6;6]

x "→ f (x)

whose graph appears in figure 4.14.

If a(x) =
f (x)
2

then

a :
[−4;4] → [−3;3]

x "→ a(x)
,

and its graph appears in figure 4.15.
If b(x) = f (2x) then

b :
[−2;2] → [−6;6]

x "→ b(x)
,

and its graph appears in figure 4.16.
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If c(x) =
f (2x)
2

then

c :
[−2;2] → [−3;3]

x "→ c(x)
,

and its graph appears in figure 4.17.
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Figure 4.14: y= f (x)
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Figure 4.15: y=
f (x)
2
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Figure 4.16: y= f (2x)
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Figure 4.17: y=
f (2x)
2

215 Example If y=
√
4− x2, then x2+y2 = 4 gives the equation of a circle with centre at (0,0) and radius 2 by virtue of 83.

Hence

y=
√

4− x2

is the upper semicircle of this circle. Figures 4.18 through 4.23 shew various transformations of this curve.

Figure 4.18:
y=
√
4− x2

Figure 4.19:
y= 2

√
4− x2

Figure 4.20:
y=
√
4−4x2

Figure 4.21:
y =√
−x2+4x

Figure 4.22:
y =
2
√
4−4x2

Figure 4.23:
y =
2
√
4−4x2 +

1

216 Example Draw the graph of the curve y= 2x2−4x+1.
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Solution: " We complete squares.

y= 2x2−4x+1 ⇐⇒
y
2

= x2−2x+
1
2

⇐⇒
y
2

+1= x2−2x+1+
1
2

⇐⇒
y
2

+1= (x−1)2+
1
2

⇐⇒
y
2

= (x−1)2−
1
2

⇐⇒ y= 2(x−1)2−1,

whence to obtain the graph of y= 2x2−4x+1 we (i) translate y= x2 one unit right, (ii) dilate the above graph
by factor of two, (iii) translate the above graph one unit down. This succession is seen in figures 4.24 through
4.26. #

217 Example The curve y= x2+
1
x
experiences the following successive transformations: (i) a translation one unit up, (ii) a

horizontal shrinkage by a factor of 2, (iii) a translation one unit left. Find its resulting equation.

Solution: " After a translation one unit up, the curve becomes

y= f (x)+1= x2+
1
x

+1= a(x).

After a horizontal shrinkage by a factor of 2 the curve becomes

y= a(2x) = 4x2+
1
2x

+1= b(x).

After a translation one unit left the curve becomes

y= b(x+1) = 4(x+1)2+
1

2x+2
+1.

The required equation is thus

y= 4(x+1)2+
1

2x+2
+1= 4x2+8x+5+

1
2x+2

.

Figure 4.24: y= (x−1)2 Figure 4.25: y= 2(x−1)2
Figure 4.26: y= 2(x−1)2−
1

#

Homework
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4.2.1 Problem Draw the graphs of the following curves:

1. y=
x2

2

2. y=
x2

2
−1

3. y= 2|x|+1

4. y=
2
x

5. y= x2+4x+5

6. y= 2x2+8x

4.2.2 Problem The curve y =
1
x
experiences the following succes-

sive transformations: (i) a translation one unit left, (ii) a vertical di-
latation by a factor of 2, (iii) a translation one unit down. Find its
resulting equation and make a rough sketch of the resulting curve.

4.2.3 Problem For the functional curve given in figure 4.27, deter-
mine its domain and image and draw the following transformations,
also determining their respective domains and images.

1. y= 2 f (x)
2. y= f (2x)

3. y= 2 f (2x)
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Figure 4.27: Problem 4.2.3.

4.3 Reflexions
218 Theorem Let f be a function If (x0,y0) is on the graph of f , then (x0,−y0) is on the graph of g, where g(x) = − f (x),
and if (x1,y1) is on the graph of f , then (−x1,y1) is on the graph of j, where j(x) = f (−x).

Proof: Let Γ f ,Γg,Γ j denote the graphs of f ,g, j respectively.

(x0,y0) ∈ Γ f ⇐⇒ y0 = f (x0) ⇐⇒ −y0 =− f (x0) ⇐⇒ −y0 = g(x0) ⇐⇒ (x0,−y0) ∈ Γg.

Similarly,

(x1,y1) ∈ Γ f ⇐⇒ y1 = f (x1) ⇐⇒ y1 = f (−(−x1)) ⇐⇒ y1 = j (−x1) ⇐⇒ (−x1,y1) ∈ Γ j.

❑

219 Definition Let f be a function. The curve y = − f (x) is said to be the reflexion of f about the x-axis and the curve
y= f (−x) is said to be the reflexion of f about the y-axis.

220 Example Figure 4.28 shews the graph of the function

f :
[−4;4] → [−2;4]

x "→ f (x)
.

Figure 4.29 shews the graph of its reflexion a about the x-axis,

a :
[−4;4] → [−4;2]

x "→ a(x)
.

Figure 4.30 shews the graph of its reflexion b about the y-axis,

b :
[−4;4] → [−2;4]

x "→ b(x)
.
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Figure 4.31 shews the graph of its reflexion c about the x-axis and y-axis,

c :
[−4;4] → [−4;2]

x "→ c(x)
.
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Figure 4.28: y= f (x).
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Figure 4.29: y=− f (x).
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Figure 4.30: y= f (−x).
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Figure 4.31:
y=− f (−x).

221 Example Figures 4.32 through 4.35 shew various reflexions about the axes for the function

d :
R → R

x "→ (x−1)2
.

Figure 4.32: y= d(x) = (x−
1)2

Figure 4.33: y = −d(x) =
−(x−1)2

Figure 4.34: y = d(−x) =
(−x−1)2

Figure 4.35: y = −d(−x) =
−(−x−1)2

222 Example Let f : R\{0}→ R with

f (x) = x+
2
x
−1.

The curve y= f (x) experiences the following successive transformations:

1. A reflexion about the x-axis.

2. A translation 3 units left.

3. A reflexion about the y-axis.

4. A vertical dilatation by a factor of 2.

Find the equation of the resulting curve. Note also how the domain of the function is affected by these transformations.

Solution: "
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1. A reflexion about the x-axis gives the curve

y=− f (x) = 1−
2
x
− x= a(x),

say, with Dom(a) = R\{0}.
2. A translation 3 units left gives the curve

y= a(x+3) = 1−
2

x+3
− (x+3) =−2−

2
x+3

− x= b(x),

say, with Dom(b) = R\{−3}.
3. A reflexion about the y-axis gives the curve

y= b(−x) =−2−
2

−x+3
+ x= c(x),

say, with Dom(c) = R\{3}.
4. A vertical dilatation by a factor of 2 gives the curve

y= 2c(x) =−4+
4

x−3
+2x= d(x),

say, with Dom(d) = R\{3}. Notice that the resulting curve is

y= d(x) = 2c(x) = 2b(−x) = 2a(−x+3) =−2 f (−x+3).

#

Homework

4.3.1 Problem Let f : R→ R with

f (x) = 2− |x|.

The curve y= f (x) experiences the following successive transforma-
tions:

1. A reflexion about the x-axis.
2. A translation 3 units up.
3. A horizontal stretch by a factor of 34 .

Find the equation of the resulting curve.

4.3.2 Problem The graphs of the following curves suffer the follow-
ing successive, rigid transformations:

1. a vertical translation of 2 units down,
2. a reflexion about the y-axis, and finally,
3. a horizontal translation of 1 unit to the left.
Find the resulting equations after all the transformations have

been exerted.

1. y= x(1−x)

2. y= 2x−3
3. y= |x+2|+1

4.3.3 Problem For the functional curve y = f (x) in figure 4.36,
draw y= f (x+1), y= f (1−x) and y=− f (1−x).
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Figure 4.36: Problem 4.3.3.

4.4 Symmetry
223 Definition A function f is even if for all x it is verified that f (x) = f (−x), that is, if the portion of the graph for x< 0 is
a mirror reflexion of the part of the graph for x> 0. This means that the graph of f is symmetric about the y-axis. A function
g is odd if for all x it is verified that g(−x) =−g(x), in other words, g is odd if it is symmetric about the origin. This implies
that the portion of the graph appearing in quadrant I is a 180◦ rotation of the portion of the graph appearing in quadrant III,
and the portion of the graph appearing in quadrant II is a 180◦ rotation of the portion of the graph appearing in quadrant IV.
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224 Example The curve in figure 4.37 is even. The curve in figure 4.38 is odd.

Figure 4.37: Example 224. The graph of an even
function.

Figure 4.38: Example 224. The graph of an odd
function.

225 Theorem Let ε1,ε2 be even functions, and let ω1,ω2 be odd functions, all sharing the same common domain. Then

1. ε1± ε2 is an even function.

2. ω1±ω2 is an odd function.

3. ε1 · ε2 is an even function.

4. ω1 ·ω2 is an even function.

5. ε1 ·ω1 is an odd function.

Proof: We have

1. (ε1± ε2)(−x) = ε1(−x)± ε2(−x) = ε1(x)± ε2(x).
2. (ω1±ω2)(−x) = ω1(−x)±ω2(−x) =−ω1(x)∓ω2(x) =−(ω1±ω2)(x)
3. (ε1ε2)(−x) = ε1(−x)ε2(−x) = ε1(x)ε2(x)
4. (ω1ω2)(−x) = ω1(−x)ω2(−x) = (−ω1(x))(−ω2(x)) = ω1(x)ω2(x))
5. (ε1ω1)(−x) = ε1(−x)ω1(−x) =−ε1(x)ω1(x)

❑

226 Corollary Let p(x) = a0+ a1x+ a2x2+ a3x3+ · · ·+ an−1xn−1+ anxn be a polynomial with real coefficients. Then the
function

p :
R → R

x "→ p(x)

is an even function if and only if each of its terms has even degree.

Proof: Assume p is even. Then p(x) = p(−x) and so

p(x) =
p(x)+ p(−x)

2

=
a0+a1x+a2x2+a3x3+ · · ·+an−1xn−1+anxn

2

+
a0−a1x+a2x2−a3x3+ · · ·+(−1)n−1an−1xn−1+(−1)nanxn

2

= a0+a2x2+a4x4+ · · ·+

and so the polynomial has only terms of even degree. The converse of this statement is trivial. ❑
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227 Example Prove that in the product

(1− x+ x2− x3+ · · ·− x99+ x100)(1+ x+ x2+ x3+ · · ·+ x99+ x100)

after multiplying and collecting terms, there does not appear a term in x of odd degree.

Solution: " Let f :
R → R

x "→ f (x)
with

f (x) = (1− x+ x2− x3+ · · ·− x99+ x100)(1+ x+ x2+ x3+ · · ·+ x99+ x100)

Then
f (−x) = (1+ x+ x2+ x3+ · · ·+ x99+ x100)(1− x+ x2− x3+ · · ·− x99+ x100) = f (x),

which means that f is an even function. Since f is a polynomial, this means that f does not have a term of odd
degree. #

Analogous to Corollary 226, we may establish the following.

228 Corollary Let p(x) = a0+ a1x+ a2x2+ a3x3+ · · ·+ an−1xn−1+ anxn be a polynomial with real coefficients. Then the
function

p :
R → R

x "→ p(x)

is an odd function if and only if each of its terms has odd degree.

229 Theorem Let f : R→ R be an arbitrary function. Then f can be written as the sum of an even function and an odd
function.

Proof: Given x ∈ R, put E(x) = f (x)+ f (−x), and O(x) = f (x)− f (−x). We claim that E is an even function
and that O is an odd function. First notice that

E(−x) = f (−x)+ f (−(−x)) = f (−x)+ f (x) = E(x),

which proves that E is even. Also,

O(−x) = f (−x)− f (−(−x)) =−( f (x)− f (−x))) =−O(x),

which proves that O is an odd function. Clearly

f (x) =
1
2
E(x)+

1
2
O(x),

which proves the theorem. ❑

230 Example Investigate which of the following functions are even, odd, or neither.

1. a :R→R, a(x) =
x3

x2+1
.

2. b :R→R, b(x) =
|x|

x2+1
.

3. c : R→ R, c(x) = |x|+2.

4. d : R→ R, d(x) = |x+2|.
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5. f : [−4;5]→R, f (x) = |x|+2.

Solution: "

1.

a(−x) =
(−x)3

(−x)2+1
=−

x3

x2+1
=−a(x),

whence a is odd, since its domain is also symmetric.
2.

b(−x) =
|− x|

(−x)2+1
=

|x|
x2+1

= b(x),

whence b is even, since its domain is also symmetric.
3.

c(−x) = |− x|+2= |x|+2= c(x),

whence c is even, since its domain is also symmetric.
4. d(−1) = |−1+2|= 1, but d(1) = 3. This function is neither even nor odd.
5. The domain of f is not symmetric, so f is neither even nor odd.

#

Homework

4.4.1 Problem Complete the following fragment of graph so that
the completion depicts (i) an even function, (ii) an odd function.

Figure 4.39: Problem 4.4.1.

4.4.2 Problem Let f :R→R be an even function and let g :R→R
be an odd function. If f (−2) = 3, f (3) = 2 and g(−2) = 2, g(3) = 4,
find

( f +g)(2), (g◦ f )(2).

4.4.3 Problem Let f be an odd function and assume that f is de-
fined at x= 0. Prove that f (0) = 0.

4.4.4 Problem Can a function be simultaneously even and odd?
What would the graph of such a function look like?

4.4.5 Problem Let A×B! R2 and suppose that f : A→ B is invert-
ible and even. Determine the sets A and B.

4.5 Transformations Involving Absolute Values
231 Theorem Let f be a function. Then both x "→ f (|x|) and x "→ f (−|x|) are even functions.

Proof: Put a(x) = f (|x|). Then a(−x) = f (|− x|) = f (|x|) = a(x), whence x "→ a(x) is even. Similarly, if
b(x) = f (−|x|), then b(−x) = f (−|− x|) = f (−|x|) = b(x) proving that x "→ b(x) is even. ❑

Notice that f (x) = f (|x|) for x> 0. Since x "→ f (|x|) is even, the graph of x "→ f (|x|) is thus obtained by erasing the portion
of the graph of x "→ f (x) for x < 0 and reflecting the part for x > 0. Similarly, since f (x) = f (−|x|) for x < 0, the graph of
x "→ f (−|x|) is obtained by erasing the portion of the graph of x "→ f (x) for x> 0 and reflecting the part for x< 0.

232 Theorem Let f be a function If (x0,y0) is on the graph of f , then (x0, |y0|) is on the graph of g, where g(x) = | f (x)|.

Proof: Let Γ f ,Γg denote the graphs of f ,g, respectively.

(x0,y0) ∈ Γ f =⇒ y0 = f (x0) =⇒ |y0| = | f (x0)| =⇒ |y0| = g(x0) =⇒ (x0, |y0|) ∈ Γg.

❑
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233 Example The graph of y = f (x) is given in figure 4.40. The transformation y = | f (x)| is given in figure 4.41. The
transformation y= f (|x|) is given in figure 4.42. The transformation y= f (−|x|) is given in figure 4.43. The transformation
y= | f (|x|)| is given in figure 4.44.
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Figure 4.40: y =
f (x).
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Figure 4.41: y =
| f (x)|.
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Figure 4.42: y =
f (|x|).
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Figure 4.43: y =
f (−|x|).
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Figure 4.44: y =
| f (|x|)|.

234 Example Figures 4.45 through 4.48 exhibit various transformations of f : x "→ (x−1)2−3.

Figure 4.45: y= f (x) = (x−
1)2−3

Figure 4.46: y = f (|x|)| =
(|x|−1)2−3

Figure 4.47: y = f (−|x|) =
(−|x|−1)2−3

Figure 4.48: y = | f (|x|)| =
|(|x|−1)2−3|

Homework

4.5.1 Problem Use the graph of f in figure 4.49 in order to draw

1. y= 2 f (x)
2. y= f (2x)

3. y= f (−x)
4. y=− f (x)

5. y=− f (−x)
6. y= f (|x|)

7. y= | f (x)|
8. y= f (−|x|)
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Figure 4.49: y= f (x)

4.5.2 Problem Draw the curves y = x2−1 and y = |x2−1| in suc-
cession.

4.5.3 Problem Draw the graph of the curve y=
√

|x|.

4.5.4 Problem Draw the graphs of the curves

y=
√

−x2+2|x|+3, y=
√

−x2−2|x|+3.

4.5.5 Problem Draw the following graphs in succession.
1. y= (x−1)2−2
2. y= |(x−1)2−2|
3. y= (|x|−1)2−2
4. y= (1+ |x|)2−2

4.5.6 Problem Draw the graph of f : R→ R, with assignment rule
f (x) = x|x|.
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4.5.7 Problem Draw the following curves in succession:
1. y= x2

2. y= (x−1)2

3. y= (|x|−1)2

4.5.8 Problem Draw the following curves in succession:
1. y= x2

2. y= x2−1
3. y= |x2−1|

4.5.9 Problem Draw the following curves in succession:
1. y= x2+2x+3
2. y= x2+2|x|+3
3. y= |x2+2x+3|
4. y= |x2+2|x|+3|

4.5.10 Problem Draw the following curves in succession:
1. y= 1−x
2. y= |1−x|
3. y= 1− |1−x|
4. y= |1− |1−x||
5. y= 1− |1− |1−x||
6. y= |1− |1− |1−x|||
7. y= 1− |1− |1− |1−x|||

8. y= |1− |1− |1− |1−x||||

4.5.11 Problem Put f1(x) = x; f2(x) = |1− f1(x)|; f3(x) = |1−
f2(x)|; . . . fn(x) = |1− fn−1(x)|. Prove that the solutions of the equa-
tion fn(x) = 0 are {±1,±3, . . . ,±(n− 3),(n− 1)} if n is even and
{0,±2, . . . ,±(n−3),(n−1)} if n is odd.

4.5.12 Problem Given in figures 4.50 and 4.51 are the graphs of
two curves, y= f (x) and y= f (ax) for some real constant a< 0.

1. Determine the value of the constant a.

2. Determine the value ofC.

x

y

Figure 4.50: Problem
4.5.12. y= f (x)

x

y

4
3

C

Figure 4.51: Problem
4.5.12. y= f (ax)

4.6 Behaviour of the Graphs of Functions

So far we have limited our study of functions to those families of functions whose graphs are known to us: lines, parabolas,
hyperbolas, or semicircles. Through some arguments involving symmetry we have been able to extend this collection to
compositions of the above listed functions with the absolute value function. We would now like to increase our repertoire of
functions that we can graph. For that we need the machinery of Calculus, which will be studied in subsequent courses. We
will content ourselves with informally introducing various terms useful when describing curves and with proving that these
properties hold for some simple curves.

4.6.1 Continuity

235 Definition We write x→ a+ to indicate the fact that x is progressively getting closer and closer to a through values
greater (to the right) of a. Similarly, we write x→ a− to indicate the fact that x is progressively getting closer and closer to a
through values smaller (to the left) of a. Finally, we write x→ a to indicate the fact that x is progressively getting closer and
closer to a through values left and right of a.

236 Definition Given a function f , we write f (a+) for the value that f (x) approaches as x→ a+. In other words, we
consider the values of a dextral neighbourhood of a, progressively decrease the length of this neighbourhood, and see which
value f approaches in this neighbourhood. Similarly, we write f (a−) for the value that f (x) approaches as x→ a−. In other
words, we consider the values of a sinistral neighbourhood of a, progressively decrease the length of this neighbourhood, and
see which value f approaches in this neighbourhood.
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237 Example Let f : [−4;4]→R be defined as follows:

f (x) =

























x2+1 if −4≤ x<−2

2 if x=−2

2+2x if −2< x< +2

6 if +2≤ x≤ 4

Determine

1. f (−2−)

2. f (−2)

3. f (−2+)

4. f (+2−)

5. f (+2)

6. f (+2+)

Solution: "

1. To find f (−2−) we look at the definition of f just to the left of−2. Thus f (−2−) = (−2)2+1= 5.
2. f (−2) = 2.
3. To find f (−2+) we look at the definition of f just to the right of−2. Thus f (−2+) = 2+2(−2) =−2.
4. To find f (+2−) we look at the definition of f just to the left of+2. Thus f (+2−) = 2+2(2) = 6.
5. f (+2) = 6.
6. To find f (+2+) we look at the definition of f just to the right of+2. Thus f (+2+) = 6.

#

Let us consider the following situation. Let f be a function and a ∈ R. Assume that f is defined in a neighbourhood of
a, but not precisely at x= a. Which value can we reasonably assign to f (a)? Consider the situations depicted in figures 4.52
through 4.54. In figure 4.52 it seems reasonably to assign a(0) = 0. What value can we reasonably assign in figure 4.53?

b(0) =
−1+1
2

= 0? In figure 4.54, what value would it be reasonable to assign? c(0) = 0?, c(0) = +∞?, c(0) = −∞? The
situations presented here are typical, but not necessarily exhaustive.

Figure 4.52: a : x "→ |x|, x '= 0. Figure 4.53: b : x "→
x
|x|
, x '= 0. Figure 4.54: c : x "→

1
x
, x '= 0.

238 Definition A function f is said to be left continuous at the point x= a if f (a−) = f (a). A function f is said to be right
continuous at the point x = a if f (a) = f (a+). A function f is said to be continuous at the point x = a if f (a−) = f (a) =
f (a+). It is continuous on the interval I if it is continuous on every point of I.
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Heuristically speaking, a continuous function is one whose graph has no “breaks.”

239 Example Given that

f (x) =











6+ x if x ∈]−∞;−2]

3x2+ xa if x ∈]−2;+∞[

is continuous, find a.

Solution: " Since f (−2−) = f (−2) = 6−2= 4 and f (−2+) = 3(−2)2−2a= 12−2a we need

f (−2−) = f (−2+) =⇒ 4= 12−2a =⇒ a= 4.

#

4.6.2 Monotonicity
240 Definition A function f is said to be increasing (respectively, strictly increasing) if a< b =⇒ f (a)≤ f (b) (respectively,
a < b =⇒ f (a) < f (b)). A function g is said to be decreasing (respectively, strictly decreasing) if a < b =⇒ g(a) ≤ g(b)
(respectively, a < b =⇒ g(a) < g(b)). A function is monotonic if it is either (strictly) increasing or decreasing. By the
intervals of monotonicity of a functionwe mean the intervals where the function might be (strictly) increasing or decreasing.

! If the function f is (strictly) increasing, its opposite− f is (strictly) decreasing, and viceversa.

The following theorem is immediate.

241 Theorem A function f is (strictly) increasing if for all a< b for which it is defined

f (b)− f (a)
b−a

≥ 0 (respectively,
f (b)− f (a)
b−a

> 0).

Similarly, a function g is (strictly) decreasing if for all a< b for which it is defined

g(b)−g(a)
b−a

≤ 0 (respectively,
g(b)−g(a)

b−a
< 0).

4.6.3 Extrema
242 Definition If there is a point a for which f (x) ≤ f (M) for all x in a neighbourhood centred at x=M then we say that f
has a local maximum at x=M. Similarly, if there is a point m for which f (x) ≥ f (m) for all x in a neighbourhood centred at
x= m then we say that f has a local minimum at x= m. The maxima and the minima of a function are called its extrema.

Consider now a continuous function in a closed interval [a;b]. Unless it is a horizontal line there, its graph goes up and
down in [a;b]. It cannot go up forever, since otherwise it would be unbounded and hence not continuous. Similarly, it cannot
go down forever. Thus there exist α,β in [a;b] such that f (α)≤ f (x)≤ f (β ), that is, f reaches maxima and minima in [a;b].

4.6.4 Convexity
We now investigate define the “bending” of the graph of a function.

243 Definition A function f : A→ B is convex in A if ∀(a,b,λ ) ∈ A2× [0;1],

f (λa+(1−λ )b)≤ f (a)λ +(1−λ ) f (b).

Similarly, a function g : A→ B is concave in A if ∀(a,b,λ ) ∈ A2× [0;1],

g(λa+(1−λ )b)≥ g(a)λ +(1−λ )g(b).

By the intervals of convexity (concavity) of a function we mean the intervals where the function is convex (concave). An
inflexion point is a point where a graph changes convexity.
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By Lemma 15, λa+(1−λ )b lies in the interval [a;b] for 0 ≤ λ ≤ 1. Hence, geometrically speaking, a convex function
is one such that if two distinct points on its graph are taken and the straight line joining these two points drawn, then the
midpoint of that straight line is above the graph. In other words, the graph of the function bends upwards. Notice that if f is
convex, then its opposite− f is concave.

Figure 4.55: A convex curve Figure 4.56: A concave curve.

Homework

4.6.1 Problem Given that

f (x) =









x2−1
x−1

if x '= 1

a if x= 1

is continuous, find a.

4.6.2 Problem Give an example of a function which is discontinu-
ous on the set {−1,0,1} but continuous everywhere else.

4.6.3 Problem Given that

f (x) =









x2−1 if x≤ 1

2x+3a if x> 1

is continuous, find a.

4.6.4 Problem Let n be a strictly positive integer. Given that

f (x) =









xn−1
x−1

if x '= 1

a if x= 1

is continuous, find a.

4.6.5 Problem Give an example of a function discontinuous at the
points ± 3√1,± 3√2,± 3√3,± 3√4,± 3√5, . . ..

4.7 The functions x "→ !x", x "→ #x$, x "→ {x}
244 Definition The floor !x" of a real number x is the unique integer defined by the inequality

!x"≤ x< !x"+1.

In other words, !x" is x if x is an integer, or the integer just to the left, if x is not an integer. For example

!3" = 3, !3.9" = 3, !−π" =−4.

If n ∈ Z and if
n≤ x< n+1,

then !x" = n. This means that the function x "→ !x" is constant between two consecutive integers. For example, between
0 and 1 it will have output 0; between 1 and 2, it will have output 1, etc., always taking the smaller of the two consecutive
integers. Its graph has the staircase shape found in figure 4.57.

245 Definition The ceiling #x$ of a real number x is the unique integer defined by the inequality

#x$−1< x≤ #x$.
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In other words, #x$ is x if x is an integer, or the integer just to the right, if x is not an integer. For example

#3$ = 3, #3.9$ = 4, !−π" =−3.

If n ∈ Z and if
n< x≤ n+1,

then #x$ = n+1. This means that the function x "→ #x$ is constant between two consecutive integers. For example, between
0 and 1 it will have output 1; between 1 and 2, it will have output 2, etc., always taking the larger of the two consecutive
integers. Its graph has the staircase shape found in figure 4.58.

1

2

3

4

-1

-2

-3

-4

-5

1 2 3 4-1-2-3-4-5

Figure 4.57: x "→ !x".

1

2

3

4

-1

-2

-3

-4

-5

1 2 3 4-1-2-3-4-5

Figure 4.58: x "→ #x$.
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2

3

4

-1

-2

-3

-4

-5

1 2 3 4-1-2-3-4-5

Figure 4.59: x "→ x−!x".

246 Definition A function f is said to be periodic of period P if there a real number P> 0 such that

x ∈ Dom( f ) =⇒ (x+P) ∈ Dom( f ) , f (x+P) = f (x).

That is, if f is periodic of period P then once f is defined on an interval of period P, then it will be defined for all other values
of its domain.

The discussion below will make use of the following lemma.

247 Lemma Let x ∈ R and z ∈ Z. Then
!x+ z" = !x"+ z.

Proof: Recall that !x" is the unique integer with the property

!x"≤ x< !x"+1.

In turn, this means that !x+ z"− z also satisfies this inequality.
By definition,

!x+ z"≤ x+ z< !x+ z"+1,

and so we have,
!x+ z"− z≤ x< !x+ z"− z+1,

from where !x+ z"− z satisfies the desired inequality and we conclude that e !x+ z"− z = !x", demonstrating
theorem. ❑

248 Example Put {x} = x−!x". Consider the function f : R→ [0;1[, f (x) = {x}, the decimal part decimal part of x. We
have

!x"≤ x< !x"+1 =⇒ 0≤ x−!x" < 1.

Also, by virtue of lemma 247,

f (x+1) = {x+1}= (x+1)−!x+1" = (x+1)− (!x"+1) = x−!x" = {x} = f (x),
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which means that f is periodic of period 1. Now,

x ∈ [0;1[ =⇒ {x} = x,

from where we gather that between 0 and 1, f behaves like the identity function. The graph of x "→ {x} appears in figure 4.59
.

Homework

4.7.1 Problem Give an example of a function r discontinuous at the
reciprocal of every non-zero integer.

4.7.2 Problem Give an example of a function discontinuous at the
odd integers.

4.7.3 Problem Give an example of a function discontinuous at the
square of every integer.

4.7.4 Problem Let ||x||=minn∈Z |x−n|. Prove that x "→ ||x|| is pe-
riodic and find its period. Also, graph this function. Notice that this
function measures the distance of a real number to its nearest integer.

4.7.5 Problem Investigate the graph of x "→ !2x".

4.7.6 Problem Is it true that for all real numbers x we have
{

x2
}

=

{x}2?

4.7.7 Problem Demonstrate that the function f :R→ {−1,1} given
by f (x) = (−1)!x" is periodic of period 2 and draw its graph.

4.7.8 Problem Discuss the graph of x "→
1

#x$−!x"
.

4.7.9 Problem Find the points of discontinuity of the function f :
R→ R, f : x "→ !x"+

√

x−!x".

4.7.10 Problem Find the points of discontinuity of the function

f :
x →








x if x ∈Q

0 if x ∈ R\Q

R "→ R

.

4.7.11 Problem Find the points of discontinuity of the function

f :
x →









0 if x ∈Q

x if x ∈ R\Q

R "→ R

.

4.7.12 Problem Find the points of discontinuity of the function

f :
x →









0 if x ∈Q

1 if x ∈ R\Q

R "→ R

.

4.7.13 Problem Prove that f :R→R, f (t+1) =
1
2

+
√

f (t)− ( f (t))2

has period 2.



5 Polynomial Functions

249 Definition A polynomial p(x) of degree n ∈ N is an expression of the form

p(x) = anxn+an−1xn−1+ · · ·+a1x+a0, an '= 0, ak ∈R,

where the ak are constants. If the ak are all integers then we say that p has integer coefficients, and we write p(x) ∈ Z[x]; if
the ak are real numbers then we say that p has real coefficients and we write p(x) ∈R[x]; etc. The degree n of the polynomial
p is denoted by deg p. The coefficient an is called the leading coefficient of p(x). A root of p is a solution to the equation
p(x) = 0.

In this chapter we learn how to graph polynomials all whose roots are real numbers.

250 Example Here are a few examples of polynomials.

• a(x) = 2x+1∈Z[x], is a polynomial of degree 1, and leading coefficient 2. It has x=−
1
2
as its only root. A polynomial

of degree 1 is also known as an affine function.

• b(x) = πx2+ x−
√
3 ∈ R[x], is a polynomial of degree 2 and leading coefficient π . By the quadratic formula b has the

two roots

x=
−1+

√

1+4π
√
3

2π
and x=

−1−
√

1+4π
√
3

2π
.

A polynomial of degree 2 is also called a quadratic polynomial or quadratic function.

• C(x) = 1 · x0 := 1, is a constant polynomial, of degree 0. It has no roots, since it is never zero.

251 Theorem The degree of the product of two polynomials is the sum of their degrees. In symbols, if p,q are polynomials,
deg pq= deg p+degq.

Proof: If p(x) = anxn+an−1xn−1+ · · ·+a1x+a0, and q(x) = bmxm +bm−1xm−1+ · · ·+b1x+b0, with an '= 0
and bm '= 0 then upon multiplication,

p(x)q(x) = (anxn+an−1xn−1+ · · ·+a1x+a0)(bmxm+bm−1xm−1+ · · ·+b1x+b0) = anbmxm+n+ · · ·+,

with non-vanishing leading coefficient anbm. ❑

252 Example The polynomial p(x) = (1+2x+3x3)4(1−2x2)5 has leading coefficient 34(−2)5 =−2592 and degree 3 ·4+
2 ·5= 22.

253 Example What is the degree of the polynomial identically equal to 0? Put p(x) ≡ 0 and, say, q(x) = x+ 1. Then by
Theorem 251 we must have deg pq= deg p+degq= deg p+1. But pq is identically 0, and hence deg pq= deg p. But if deg p
were finite then

deg p= deg pq= deg p+1 =⇒ 0= 1,

nonsense. Thus the 0-polynomial does not have any finite degree. We attach to it, by convention, degree−∞.

5.1 Power Functions
254 Definition A power function is a function whose formula is of the form x "→ xα , where α ∈ R. In this chapter we will
only study the case when α is a positive integer.

102
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If n is a positive integer, we are interested in how to graph x "→ xn. We have already encountered a few instances of power
functions. For n = 0, the function x "→ 1 is a constant function, whose graph is the straight line y = 1 parallel to the x-axis.
For n = 1, the function x "→ x is the identity function, whose graph is the straight line y = x, which bisects the first and third
quadrant. These graphs were not obtained by fiat, we demonstrated that the graphs are indeed straight lines in Theorem 93.
Also, for n = 2, we have the square function x "→ x2 whose graph is the parabola y = x2 encountered in example 115. We
reproduce their graphs below in figures 5.1 through 5.3 for easy reference.

Figure 5.1: x "→ 1. Figure 5.2: x "→ x. Figure 5.3: x "→ x2.

The graphs above were obtained by geometrical arguments using similar triangles and the distance formula. This method
of obtaining graphs of functions is quite limited, and hence, as a view of introducing a more general method that argues from
the angles of continuity, monotonicity, and convexity, we will derive the shape of their graphs once more.

5.2 Affine Functions
255 Definition Let m,k be real number constants. A function of the form x "→ mx+ k is called an affine function. In the
particular case that m= 0, we call x "→ k a constant function. If, however, k = 0 and m '= 0, then we call the function x "→ mx
a linear function.

256 Theorem (Graph of an Affine Function) The graph of an affine function

f :
R → R

x "→ mx+ k

is a continuous straight line. It is strictly increasing if m> 0 and strictly decreasing if m< 0. If m '= 0 then x "→ mx+ k has a

unique zero x=−
k
m
. If m '= 0 then Im( f ) = R.

Proof: Since for any a ∈R, f (a+) = f (a) = f (a−) = ma+ k, an affine function is everywhere continuous. Let
λ ∈ [0;1]. Since

f (λa+(1−λ )b) = m(λa+(1−λ )b)+ k= mλa+mb−mbλ+ k= λmf (a)+ (1−λ )mf (b),

an affine function is both convex and concave. This means that it does not bend upwards or downwards (or that
it bends upwards and downwards!) always, and hence, it must be a straight line. Let a< b. Then

f (b)− f (a)
b−a

=
mb+ k−ma− k

b−a
= m,

which is strictly positive for m > 0 and strictly negative for m < 0. This means that f is a strictly increasing
function for m> 0 and strictly decreasing for m< 0. Also given any a ∈ R we have

f (x) = a =⇒ mx+ k= a =⇒ x=
a− k
m

,

which is a real number as long as m '= 0. Hence every real number is an image of f meaning that Im( f ) = R.

In particular, if a = 0, then x = −
k
m
is the only solution to the equation f (x) = 0. Clearly, if m = 0, then

Im ( f ) = {k}.❑

This information is summarised in the following tables.
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x −∞ −
k
m

+∞

↗

f (x) = mx+ k 0

↗

Figure 5.4: Variation chart for x "→ mx+ k, with
m> 0.

Figure 5.5: Graph of x "→ mk+ k, m> 0.

x −∞ −
k
m

+∞

↘

f (x) = mx+ k 0

↘

Figure 5.6: Variation chart for x "→ mx+ k, with
m< 0.

Figure 5.7: Graph of x "→ mk+ k, m< 0.

Homework

5.2.1 Problem (Graph of the Absolute Value Function) Prove
that the graph of the absolute value function

AbsVal :
R → R

x "→ |x|

is convex. Prove that x "→ |x| is an even function, decreasing for
x< 0 and increasing for x> 0. Moreover, prove that Im(AbsVal) =
[0;+∞[.

5.3 The Square Function
In this section we study the shape of the graph of the square function x "→ x2.

257 Theorem (Graph of the Square Function) The graph of the square function

Sq :
R → R

x "→ x2
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is a convex curve which is strictly decreasing for x< 0 and strictly increasing for x> 0. Moreover, x "→ x2 is an even function
and Im (Sq) = [0;+∞[.

Proof:
As Sq(−x) = (−x)2 = x2 = Sq(x), the square function is an even function. Now, for a< b

Sq(b)−Sq(a)
b−a

=
b2−a2

b−a
= b+a.

If a < b < 0 the sum a+b is negative and x "→ x2 is a strictly decreasing function. If 0 < a < b the sum a+b is
positive and x "→ x2 is a strictly increasing function. To prove that x "→ x2 is convex we observe that

Sq(λa+(1−λ )b)≤ λSq(a)+ (1−λ )Sq(b)

⇐⇒ λ 2a2+2λ (1−λ )ab+(1−λ )2b2 ≤ λa2+(1−λ )b2

⇐⇒ 0≤ λ (1−λ )a2−2λ (1−λ )ab+((1−λ)− (1−λ)2)b2

⇐⇒ 0≤ λ (1−λ )a2−2λ (1−λ )ab+λ (1−λ )b2

⇐⇒ 0≤ λ (1−λ )(a2−2ab+b2)

⇐⇒ 0≤ λ (1−λ )(a−b)2.

This last inequality is clearly true for λ ∈ [0;1], establishing the claim. Also suppose that y ∈ Im (Sq) . Thus
there is x ∈ R such that Sq(x) = y =⇒ x2 = y. But the equation y = x2 is solvable only for y ≥ 0 and so only
positive numbers appear as the image of x "→ x2. Since for x ∈ [0;+∞[ we have Sq(

√
x) = x, we conclude that

Im (Sq) = [0;+∞[. The graph of the x "→ x2 is called a parabola. We summarise this information by means of the
following diagram.

x −∞ 0 +∞

f (x) = x2 ↘ ↗

0

Figure 5.8: Variation chart for x "→ x2.

Figure 5.9: Graph of x "→ x2.

❑

5.4 Quadratic Functions
258 Definition Let a,b,c be real numbers, with a '= 0. A function of the form

f :
R → R

x "→ ax2+bx+ c

is called a quadratic functionwith leading coefficient a.
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259 Theorem Let a '= 0,b,c be real numbers and let x "→ ax2+bx+c be a quadratic function. Then its graph is a parabola. If

a > 0 the parabola has a local minimum at x=−
b
2a
and it is convex. If a< 0 the parabola has a local maximum at x=−

b
2a

and it is concave.

Proof: Put f (x) = ax2+bx+ c. Completing squares,

ax2+bx+ c = a
(

x2+2
b
2a
x+

b2

4a2

)

+ c−
b2

4a

= a
(

x+
b
2a

)2
+
4ac−b2

4a
,

and hence this is a horizontal translation −
b
2a

units and a vertical translation
4ac−b2

4a
units of the square

function x "→ x2 and so it follows from Theorems 257, 207 and 212, that the graph of f is a parabola.

Assume first that a > 0. Then f is convex, decreases if x < −
b
2a

and increases if x > −
b
2a
, and so it has a

minimum at x=−
b
2a
. The analysis of − f yields the case for a< 0, and the Theorem is proved. ❑

The information of Theorem 259 is summarised in the following tables.

x −∞ −
b
2a

+∞

↘ ↗

f (x) = ax2+bx+ c 0

Figure 5.10: x "→ ax2+bx+ c, with a> 0.
Figure 5.11: Graph of x "→ ax2+bx+ c, a> 0.

x −∞ −
b
2a

+∞

f (x) = ax2+bx+ c 0

↗ ↘

Figure 5.12: x "→ ax2+bx+ c, with a< 0. Figure 5.13: Graph of x "→ ax2+bx+ c, a< 0.
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260 Definition The point
(

−
b
2a

,
4ac−b2

4a

)

lies on the parabola and it is called the vertex of the parabola y= ax2+bx+ c.

The quantity b2−4ac is called the discriminant of ax2+bx+ c. The equation

y= a
(

x+
b
2a

)2
+
4ac−b2

4a

is called the canonical equation of the parabola y= ax2+bx+ c.

!The parabola x "→ ax2+bx+c is symmetric about the vertical line x=−
b
2a

passing through its vertex. Notice
that the axis of symmetry is parallel to the y-axis. If (h,k) is the vertex of the parabola, by completing squares, the
equation of a parabola with axis of symmetry parallel to the y-axis can be written in the form y= a(x−h)2+ k.
Using Theorem 107, the equation of a parabola with axis of symmetry parallel to the x-axis can be written in the
form x= a(y− k)2+h.

261 Example A parabola with axis of symmetry parallel to the y-axis and vertex at (1,2). If the parabola passes through
(3,4), find its equation.

Solution: " The parabola has equation of the form y= a(x−h)2+ k = a(x−1)2+2. Since when x= 3 we get
y= 4, we have,

4= a(3−1)2+2 =⇒ 4= 4a+2 =⇒ a=
1
2
.

The equation sought is thus

y=
1
2

(x−1)2+2.

#

5.4.1 Zeros and Quadratic Formula

Figure 5.14: No real zeroes. Figure 5.15: One real zero. Figure 5.16: Two real zeros.

262 Definition In the quadratic equation ax2+bx+ c= 0, a '= 0, the quantity b2−4ac is called the discriminant.

263 Corollary (Quadratic Formula) The roots of the equation ax2+bx+ c= 0 are given by the formula

ax2+bx+ c= 0 ⇐⇒ x=
−b±

√
b2−4ac
2a

(5.1)

If a '= 0,b,c are real numbers and b2−4ac= 0, the parabola x "→ ax2+bx+ c is tangent to the x-axis and has one (repeated)
real root. If b2−4ac> 0 then the parabola has two distinct real roots. Finally, if b2−4ac< 0 the parabola has two complex
roots.
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Proof: By Theorem 259 we have

ax2+bx+ c= a
(

x+
b
2a

)2
+
4ac−b2

4a
,

and so

ax2+bx+ c= 0 ⇐⇒
(

x+
b
2a

)2
=
b2−4ac
4a2

⇐⇒ x+
b
2a

= ±
√
b2−4ac
2|a|

⇐⇒ x=
−b±

√
b2−4ac
2a

,

where we have dropped the absolute values on the last line because the only effect of having a< 0 is to change
from ± to ∓.

If b2−4ac= 0 then the vertex of the parabola is at
(

−
b
2a

,0
)

on the x-axis, and so the parabola is tangent there.

Also, x=−
b
2a

would be the only root of this equation. This is illustrated in figure 5.15.

If b2−4ac> 0, then
√
b2−4ac is a real number '= 0 and so

−b−
√
b2−4ac
2a

and
−b+

√
b2−4ac
2a

are distinct
numbers. This is illustrated in figure 5.16.

If b2− 4ac < 0, then
√
b2−4ac is a complex number '= 0 and so

−b−
√
b2−4ac
2a

and
−b+

√
b2−4ac
2a

are
distinct complex numbers. This is illustrated in figure 5.14. ❑

! If a quadratic has real roots, then the vertex lies on a line crossing the midpoint between the roots.

Figure 5.17: y= x2−5x+3 Figure 5.18: y= |x2−5x+3| Figure 5.19: y= |x|2−5|x|+3

264 Example Consider the quadratic function f :R→R, f (x) = x2−5x+3.

1. Write this parabola in canonical form and hence find the
vertex of f . Determine the intervals of monotonicity of
f and its convexity.

2. Find the x-intercepts and y-intercepts of f .

3. Graph y= f (x), y= | f (x)|, and y= f (|x|).

4. Determine the set of real numbers x for which f (x) > 0.
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Solution: "

1. Completing squares

y= x2−5x+3=

(

x−
5
2

)2
−
13
4

.

From this the vertex is at
(
5
2
,−
13
4

)

. Since the leading coefficient of f is positive, f will be increasing for

x>
5
2
and it will be decreasing for x<

5
2
and f is concave for all real values of x.

2. For x= 0, f (0) = 02−5 ·0+3= 3, and hence y= f (0) = 3 is the y-intercept. By the quadratic formula,

f (x) = 0 ⇐⇒ x2−5x+3= 0 ⇐⇒ x=
−(−5)±

√

(−5)2−4(1)(3)
2(1)

=
5±
√
13

2
.

Observe that
5−
√
13

2
≈ 0.697224362 and

5+
√
13

2
≈ 4.302775638.

3. The graphs appear in figures 5.17 through 5.19.

4. From the graph in figure 5.17, x2−5x+3> 0 for values x ∈

]

−∞;
5−
√
13

2

[

or x ∈

]

5+
√
13

2
;+∞

[

.

#

265 Corollary If a '= 0,b,c are real numbers and if b2−4ac< 0, then ax2+bx+ c has the same sign as a.

Proof: Since

ax2+bx+ c= a

(
(

x+
b
2a

)2
+
4ac−b2

4a2

)

,

and 4ac−b2 > 0,

(
(

x+
b
2a

)2
+
4ac−b2

4a2

)

> 0 and so ax2+bx+ c has the same sign as a. ❑

266 Example Prove that the quantity q(x) = 2x2+ x+1 is positive regardless of the value of x.

Solution: " The discriminant is 12−4(2)(1) =−7< 0, hence the roots are complex. By Corollary 265, since
its leading coefficient is 2 > 0, q(x) > 0 regardless of the value of x. Another way of seeing this is to complete
squares and notice the inequality

2x2+ x+1= 2
(

x+
1
4

)2
+
7
8
≥
7
8
,

since
(

x+
1
4

)2
being the square of a real number, is ≥ 0. #

By Corollary 263, if a '= 0,b,c are real numbers and if b2−4ac '= 0 then the numbers

r1 =
−b−

√
b2−4ac
2a

and r2 =
−b+

√
b2−4ac
2a

are distinct solutions of the equation ax2+bx+ c= 0. Since

r1+ r2 =−
b
a
, and r1r2 =

c
a
,

any quadratic can be written in the form

ax2+bx+ c= a
(

x2+
bx
a

+
c
a

)

= a
(

x2− (r1+ r2)x+ r1r2
)

= a(x− r1)(x− r2).

We call a(x− r1)(x− r2) a factorisation of the quadratic ax2+bx+ c.
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267 Example A quadratic polynomial p has 1±
√
5 as roots and it satisfies p(1) = 2. Find its equation.

Solution: " Observe that the sum of the roots is

r1+ r2 = 1−
√
5+1+

√
5= 2

and the product of the roots is

r1r2 = (1−
√
5)(1+

√
5) = 1− (

√
5)2 = 1−5=−4.1

Hence p has the form
p(x) = a

(

x2− (r1+ r2)x+ r1r2
)

= a(x2−2x−4).

Since
2= p(1) =⇒ 2= a(12−2(1)−4) =⇒ a=−

2
5
,

the polynomial sought is

p(x) =−
2
5
(

x2−2x−4
)

.

#

Homework

5.4.1 Problem Let

R1 = {(x,y) ∈R2|y≥ x2−1},

R2 = {(x,y) ∈R2|x2+y2 ≤ 4},

R3 = {(x,y) ∈R2|y≤−x2+4}.

Sketch the following regions.

1. R1 \R2
2. R1∩R3
3. R2 \R1
4. R1∩R2

5.4.2 Problem Write the following parabolas in canonical form,
determine their vertices and graph them: (i) y = x2 + 6x+ 9, (ii)
y = x2 + 12x+ 35, (iii) y = (x− 3)(x+ 5), (iv) y = x(1− x), (v)
y= 2x2−12x+23, (vi) y= 3x2−2x+ 8

9 , (vii) y= 1
5x
2+2x+13

5.4.3 Problem Find the vertex of the parabola y= (3x−9)2−9.

5.4.4 Problem Find the equation of the parabola whose axis of sym-
metry is parallel to the y-axis, with vertex at (0,−1) and passing
through (3,17).

5.4.5 Problem Find the equation of the parabola having roots at
x=−3 and x= 4 and passing through (0,24).

5.4.6 Problem Let 0≤ a,b,c≤ 1. Prove that at least one of the prod-
ucts a(1−b),b(1−c),c(1−a) is smaller than or equal to 14 .

5.4.7 Problem An apartment building has 30 units. If all the units
are inhabited, the rent for each unit is $700 per unit. For every empty
unit, management increases the rent of the remaining tenants by $25.
What will be the profit P(x) that management gains when x units are
empty? What is the maximum profit?

5.4.8 Problem Find all real solutions to |x2−2x| = |x2+1|.

5.4.9 Problem Find all the real solutions to

(x2+2x−3)2 = 2.

5.4.10 Problem Solve x3−x2−9x+9 = 0.

5.4.11 Problem Solve x3−2x2−11x+12 = 0.

5.4.12 Problem Find all real solutions to x3−1 = 0.

5.4.13 Problem A parabola with axis of symmetry parallel to the
x-axis and vertex at (1,2). If the parabola passes through (3,4), find
its equation.

5.4.14 Problem Solve 9+x−4 = 10x−2.

5.4.15 Problem Find all the real values of the parameter t for which
the equation in x

t2x−3t = 81x−27
has a solution.

5.4.16 Problem The sum of two positive numbers is 50. Find the
largest value of their product.

1As a shortcut for this multiplication you may wish to recall the difference of squares identity: (a−b)(a+b) = a2−b2.
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5.4.17 Problem Of all rectangles having perimeter 20 shew that the
square has the largest area.

5.4.18 Problem An orchard currently has 25 trees, which produce
600 fruits each. It is known that for each additional tree planted, the
production of each tree diminishes by 15 fruits. Find:

1. the current fruit production of the orchard,

2. a formula for the production obtained from each tree upon
planting x more trees,

3. a formula P(x) for the production obtained from the orchard
upon planting x more trees.

4. How many trees should be planted in order to yield maximum
production?

5.5 x "→ x2n+2, n ∈ N

The graphs of y= x2, y= x4, y= x6, etc., resemble one other. For −1 ≤ x≤ 1, the higher the exponent, the flatter the graph
(closer to the x-axis) will be, since

|x| < 1 =⇒ · · · < x6 < x4 < x2 < 1.

For |x|≥ 1, the higher the exponent, the steeper the graph will be since

|x| > 1 =⇒ · · · > x6 > x4 > x2 > 1.

We collect this information in the following theorem, of which we omit the proof.

268 Theorem Let n ≥ 2 be an integer and f (x) = xn. Then if n is even, f is convex, f is decreasing for x < 0, and f is
increasing for x> 0. Also, f (−∞) = f (+∞) = +∞.

Figure 5.20: y= x2. Figure 5.21: y= x4. Figure 5.22: y= x6.

x −∞ 0 +∞

↘ ↗

f (x) = xn 0

Figure 5.23: x "→ xn, with
n> 0 integer and even.

5.6 The Cubic Function
We now deduce properties for the cube function.

269 Theorem (Graph of the Cubic Function) The graph of the cubic function

Cube :
R → R

x "→ x3

is concave for x< 0 and convex for x> 0. x "→ x3 is an increasing odd function and Im(Cube) = R.
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Proof: Consider
Cube(λa+(1−λ )b)−λCube(a)− (1−λ )Cube(b),

which is equivalent to
(λa+(1−λ )b)3−λa3− (1−λ )b3,

which is equivalent to

(λ 3−λ )a3+((1−λ )3− (1−λ ))b3+3λ (1−λ )ab(λa+(1−λ)b),

which is equivalent to

−(1−λ )(1+λ )λa3+(−λ 3+3λ 2−2λ )b3+3λ (1−λ )ab(λa+(1−λ )b),

which in turn is equivalent to

(1−λ )λ (−(1+λ )a3+(λ −2)b3+3ab(λa+(1−λ )b)).

This last expression factorises as

−λ (1−λ )(a−b)2(λ (a−b)+2b+a).

Since λ (1−λ )(a−b)2≥ 0 for λ ∈ [0;1],

Cube(λa+(1−λ )b)−λCube(a)− (1−λ )Cube(b)

has the same sign as
−(λ (a−b)+2b+a)=−(λa+(1−λ )b+b+a).

If (a,b) ∈]0;+∞[2 then λa+(1−λ )b≥ 0 by lemma 15 and so

−(λa+(1−λ )b+b+a)≤ 0

meaning that Cube is convex for x≥ 0. Similarly, if (a,b) ∈]−∞;0[2 then

−(λa+(1−λ )b+b+a)≥ 0

and so x "→ x3 is concave for x≥ 0. This proves the claim.

As Cube(−x) = (−x)3 =−x3 =−Cube(x), the cubic function is an odd function. Since for a< b

Cube(b)−Cube(a)
b−a

=
b3−a3

b−a
= b2+ab+b2 =

(

b+
a
2

)2
+
3a2

4
> 0,

Cube is a strictly increasing function. Also if y∈ Im(Cube) then there is x ∈R such that x3 =Cube(x) = y. The
equation y = x3 has a solution for every y ∈ R and so Im (Cube) = R. The graph of x "→ x3 appears in figure
5.25. ❑

5.7 x "→ x2n+3, n ∈ N

The graphs of y= x3, y= x5, y= x7, etc., resemble one other. For −1 ≤ x≤ 1, the higher the exponent, the flatter the graph
(closer to the x-axis) will be, since

|x| < 1 =⇒ · · · < |x7| < |x5| < |x3| < 1.
For |x|≥ 1, the higher the exponent, the steeper the graph will be since

|x| > 1 =⇒ · · · > |x7| > |x5| > |x3| > 1.

We collect this information in the following theorem, of which we omit the proof.

270 Theorem Let n≥ 3 be an integer and f (x) = xn. Then if n is odd, f is increasing, f is concave for x< 0, and f is convex
for x> 0. Also, f (−∞) =−∞ and f (+∞) = +∞.
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x −∞ 0 +∞

↗

f (x) = xn 0

↗

Figure 5.24: x "→ xn, with
n≥ 3 odd.

Figure 5.25: y= x3. Figure 5.26: y= x5. Figure 5.27: y= x7.

5.8 Graphs of Polynomials
Recall that the zeroes of a polynomial p(x) ∈ R[x] are the solutions to the equation p(x) = 0, and that the polynomial is said
to split in R if all the solutions to the equation p(x) = 0 are real.

In this section we study how to graph polynomials that split in R, that is, we study how to graph polynomials of the form

p(x) = a(x− r1)m1(x− r2)m2 · · · (x− rk)mk ,

where a ∈ R\{0} and the ri are real numbers and the mi ≥ 1 are integers.

To graph such polynomials, we must investigate the global behaviour of the polynomial, that is, what happens as x→±∞,
and we must also investigate the local behaviour around each of the roots ri.

We start with the following theorem, which we will state without proof.

271 Theorem A polynomial function x "→ p(x) is an everywhere continuous function.

272 Theorem Let p(x) = anxn+an−1xn−1+ · · ·+a1x+a0 an '= 0, be a polynomial with real number coefficients. Then

p(−∞) = (signum(an))(−1)n∞, p(+∞) = (signum(an))∞.

Thus a polynomial of odd degree will have opposite signs for values of large magnitude and different sign, and a polynomial
of even degree will have the same sign for values of large magnitude and different sign.

Proof: If x '= 0 then

p(x) = anxn+an−1xn−1+ · · ·+a1x+a0 = anxn
(

1+
an−1
x

+ · · ·+
a1
xn−1

+
a0
xn
)

∼ anxn,

since as x→±∞, the quantity in parenthesis tends to 1 and so the eventual sign of p(x) is determined by anxn,
which gives the result. ❑

We now state the basic result that we will use to graph polynomials.

273 Theorem Let a '= 0 and the ri are real numbers and the mi be positive integers. Then the graph of the polynomial

p(x) = a(x− r1)m1(x− r2)m2 · · · (x− rk)mk ,

• crosses the x-axis at x= ri if mi is odd.

• is tangent to the x-axis at x= ri if mi is even.
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• has a convexity change at x= ri if mi ≥ 3 and mi is odd.

Proof: Since the local behaviour of p(x) is that of c(x− ri)mi (where c is a real number constant) near ri, the
theorem follows at once from our work in section 5.1. ❑
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Figure 5.28: Example
274.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.29: Example
275.
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Figure 5.30: Example
276.
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Figure 5.31: Example
277,.

274 Example Make a rough sketch of the graph of y = (x+ 2)x(x− 1). Determine where it achieves its local extrema and
their values. Determine where it changes convexity.

Solution: " We have p(x) = (x+2)x(x−1)∼ (x) · x(x) = x3, as x→+∞. Hence p(−∞) = (−∞)3 = −∞ and
p(+∞) = (+∞)3 = +∞. This means that for large negative values of x the graph will be on the negative side of
the y-axis and that for large positive values of x the graph will be on the positive side of the y-axis. By Theorem
273, the graph crosses the x-axis at x=−2, x= 0, and x= 1. The graph is shewn in figure 5.28. #

275 Example Make a rough sketch of the graph of y= (x+2)3x2(1−2x).

Solution: " We have (x+ 2)3x2(1− 2x) ∼ x3 · x2(−2x) = −2x6. Hence if p(x) = (x+ 2)3x2(1− 2x) then
p(−∞) =−2(−∞)6 =−∞ and p(+∞) =−2(+∞)6 =−∞, which means that for both large positive and negative
values of x the graph will be on the negative side of the y-axis. By Theorem 273, in a neighbourhood of x= −2,
p(x) ∼ 20(x+ 2)3, so the graph crosses the x-axis changing convexity at x = −2. In a neighbourhood of 0,

p(x)∼ 8x2 and the graph is tangent to the x-axis at x= 0. In a neighbourhood of x=
1
2
, p(x)∼

25
16

(1−2x), and

so the graph crosses the x-axis at x= 1
2 . The graph is shewn in figure 5.29. #

276 Example Make a rough sketch of the graph of y= (x+2)2x(1− x)2.

Solution: " The dominant term of (x+2)2x(1− x)2 is x2 · x(−x)2 = x5. Hence if p(x) = (x+2)2x(1− x)2 then
p(−∞) = (−∞)5 = −∞ and p(+∞) = (+∞)5 = +∞, which means that for large negative values of x the graph
will be on the negative side of the y-axis and for large positive values of x the graph will be on the positive side of
the y-axis. By Theorem 273, the graph crosses the x-axis changing convexity at x=−2, it is tangent to the x-axis
at x= 0 and it crosses the x-axis at x= 1

2 . The graph is shewn in figure 5.30. #

277 Example , The polynomial in figure 5.31, has degree 5. You may assume that the points marked below with a dot
through which the polynomial passes have have integer coordinates. You may also assume that the graph of the polynomial
changes concavity at x= 2.
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1. Determine p(1).

2. Find the general formula for p(x).

3. Determine p(3).

Solution: "

1. From the graph p(1) =−1.
2. p has roots at x = −2, x = 0, x = +2. Moreover, p has a zero of multiplicity at x= 2, and so it must have

an equation of the form p(x) = A(x+2)(x)(x−2)3. Now

−1= p(1) = A(1+2)(1)(1−2)3 =⇒ A=
1
3

=⇒ p(x) =
(x+2)(x)(x−2)3

3
.

3. p(3) =
(3+2)(3)(3−2)3

3
= 5.

#

Homework

5.8.1 Problem Make a rough sketch of the following curves.
1. y= x3−x
2. y= x3−x2

3. y= x2(x−1)(x+1)
4. y= x(x−1)2(x+1)2

5. y= x3(x−1)(x+1)
6. y=−x2(x−1)2(x+1)3

7. y= x4−8x2+16

5.8.2 Problem The polynomial in figure 5.32 has degree 4.
1. Determine p(0).
2. Find the equation of p(x).
3. Find p(−3).

4. Find p(2).
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Figure 5.32: Problem 5.8.2.

5.9 Polynomials

5.9.1 Roots
In sections 5.2 and 5.4 we learned how to find the roots of equations (in the unknown x) of the type ax+b= 0 and ax2+bx+c=
0, respectively. We would like to see what can be done for equations where the power of x is higher than 2. We recall that

278 Definition If all the roots of a polynomial are in Z (integer roots), then we say that the polynomial splits or factors over
Z. If all the roots of a polynomial are in Q (rational roots), then we say that the polynomial splits or factors over Q. If all the
roots of a polynomial are in C (complex roots), then we say that the polynomial splits (factors) over C.

! Since Z⊂Q⊂ R⊂C, any polynomial splitting on a smaller set immediately splits over a larger set.

279 Example The polynomial l(x) = x2−1= (x−1)(x+1) splits overZ. The polynomial p(x) = 4x2−1= (2x−1)(2x+1)
splits overQ but not over Z. The polynomial q(x) = x2−2= (x−

√
2)(x+

√
2) splits overR but not overQ. The polynomial

r(x) = x2+1= (x− i)(x+ i) splits over C but not over R. Here i=
√
−1 is the imaginary unit.
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5.9.2 Ruffini’s Factor Theorem
280 Theorem (Division Algorithm) If the polynomial p(x) is divided by a(x) then there exist polynomials q(x),r(x) with

p(x) = a(x)q(x)+ r(x) (5.2)

and 0≤ degree r(x) < degree a(x).

281 Example If x5+ x4+1 is divided by x2+1 we obtain

x5+ x4+1= (x3+ x2− x−1)(x2+1)+ x+2,

and so the quotient is q(x) = x3+ x2− x−1 and the remainder is r(x) = x+2.

282 Example Find the remainder when (x+3)5+(x+2)8+(5x+9)1997 is divided by x+2.

Solution: " As we are dividing by a polynomial of degree 1, the remainder is a polynomial of degree 0, that is,
a constant. Therefore, there is a polynomial q(x) and a constant r with

(x+3)5+(x+2)8+(5x+9)1997 = q(x)(x+2)+ r

Letting x=−2 we obtain

(−2+3)5+(−2+2)8+(5(−2)+9)1997 = q(−2)(−2+2)+ r= r.

As the sinistral side is 0 we deduce that the remainder r = 0. #

283 Example A polynomial leaves remainder−2 upon division by x−1 and remainder−4 upon division by x+2. Find the
remainder when this polynomial is divided by x2+ x−2.

Solution: " From the given information, there exist polynomials q1(x),q2(x) with p(x) = q1(x)(x−1)−2 and
p(x) = q2(x)(x+ 2)− 4. Thus p(1) = −2 and p(−2) = −4. As x2 + x− 2 = (x− 1)(x+ 2) is a polynomial of
degree 2, the remainder r(x) upon dividing p(x) by x2+ x−1 is of degree 1 or smaller, that is r(x) = ax+b for
some constants a,b which we must determine. By the Division Algorithm,

p(x) = q(x)(x2+ x−1)+ax+b.

Hence
−2= p(1) = a+b

and
−4= p(−2) =−2a+b.

From these equations we deduce that a= 2/3,b=−8/3. The remainder sought is

r(x) =
2
3
x−

8
3
.

#

284 Theorem (Ruffini’s Factor Theorem) The polynomial p(x) is divisible by x−a if and only if p(a) = 0. Thus if p is a
polynomial of degree n, then p(a) = 0 if and only if p(x) = (x−a)q(x) for some polynomial q of degree n−1.

Proof: As x−a is a polynomial of degree 1, the remainder after diving p(x) by x−a is a polynomial of degree
0, that is, a constant. Therefore

p(x) = q(x)(x−a)+ r.

From this we gather that p(a) = q(a)(a−a)+ r= r, from where the theorem easily follows. ❑
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285 Example Find the value of a so that the polynomial

t(x) = x3−3ax2+2

be divisible by x+1.

Solution: " By Ruffini’s Theorem 284, we must have

0= t(−1) = (−1)3−3a(−1)2+2 =⇒ a=
1
3
.

#

286 Definition Let a be a root of a polynomial p. We say that a is a root of multiplicity m if p(x) is divisible by (x−a)m but
not by (x−a)m+1. This means that p can be written in the form p(x) = (x−a)mq(x) for some polynomial q with q(a) '= 0.

287 Corollary If a polynomial of degree n had any roots at all, then it has at most n roots.

Proof: If it had at least n+1 roots then it would have at least n+1 factors of degree 1 and hence degree n+1
at least, a contradiction. ❑

Notice that the above theorem only says that if a polynomial has any roots, then it must have at most its degree number of
roots. It does not say that a polynomial must possess a root. That all polynomials have at least one root is much more difficult
to prove. We will quote the theorem, without a proof.

288 Theorem (Fundamental Theorem of Algebra) A polynomial of degree at least one with complex number coefficients
has at least one complex root.

! The Fundamental Theorem of Algebra implies then that a polynomial of degree n has exactly n roots
(counting multiplicity).

A more useful form of Ruffini’s Theorem is given in the following corollary.

289 Corollary If the polynomial p with integer coefficients,

p(x) = anxn+an−1xn−1+ · · ·+a1x+a0.

has a rational root st ∈Q (here s
t is assumed to be in lowest terms), then s divides a0 and t divides an.

Proof: We are given that

0= p
( s
t

)

= an
(
sn

tn

)

+an−1
(
sn−1

tn−1

)

+ · · ·+a1
( s
t

)

+a0.

Clearing denominators,
0= ansn+an−1sn−1t+ · · ·+a1stn−1+a0tn.

This last equality implies that

−a0tn = s(ansn−1+an−1sn−2t+ · · ·+a1tn−1).

Since both sides are integers, and since s and t have no factors in common, then s must divide a0. We also gather
that

−ansn = t(an−1sn−1+ · · ·+a1stn−2+a0tn−1),

from where we deduce that t divides an, concluding the proof. ❑

290 Example Factorise a(x) = x3−3x−5x2+15 over Z[x] and over R[x].
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Solution: " By Corollary 289, if a(x) has integer roots then they must be in the set {−1,1,−3,3,−5,5}. We
test a(±1),a(±3),a(±5) to see which ones vanish. We find that a(5) = 0. By the Factor Theorem, x−5 divides
a(x). Using long division,

x2 −3
x−5

)

x3−5x2−3x+15
− x3+5x2

−3x+15
3x−15

0

we find

a(x) = x3−3x−5x2+15= (x−5)(x2−3),

which is the required factorisation over Z[x]. The factorisation over R[x] is then

a(x) = x3−3x−5x2+15= (x−5)(x−
√
3)(x+

√
3).

#

291 Example Factorise b(x) = x5− x4−4x+4 over Z[x] and over R[x].

Solution: " By Corollary 289, if b(x) has integer roots then they must be in the set {−1,1,−2,2,−4,4}. We
quickly see that b(1) = 0, and so, by the Factor Theorem, x−1 divides b(x). By long division

x4 −4
x−1

)

x5− x4−4x+4
− x5+ x4

−4x+4
4x−4

0

we see that

b(x) = (x−1)(x4−4) = (x−1)(x2−2)(x2+2),

which is the desired factorisation over Z[x]. The factorisation over R is seen to be

b(x) = (x−1)(x−
√
2)(x+

√
2)(x2+2).

Since the discriminant of x2+2 is −8< 0, x2+2 does not split over R. #

292 Lemma Complex roots of a polynomial with real coefficients occur in conjugate pairs, that is, if p is a polynomial with
real coefficients and if u+ vi is a root of p, then its conjugate u− vi is also a root for p. Here i=

√
−1 is the imaginary unit.

Proof: Assume

p(x) = a0+a1x+ · · ·+anxn
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and that p(u+ vi) = 0. Since the conjugate of a real number is itself, and conjugation is multiplicative (Theorem
472), we have

0 = 0

= p(u+ vi)

= a0+a1(u+ vi)+ · · ·+an(u+ vi)n

= a0+a1(u+ vi)+ · · ·+an(u+ vi)n

= a0+a1(u− vi)+ · · ·+an(u− vi)n

= p(u− vi),

whence u− vi is also a root. ❑

Since the complex pair root u± viwould give the polynomial with real coefficients

(x−u− vi)(x−u+ vi)= x2−2ux+(u2+ v2),

we deduce the following theorem.

293 Theorem Any polynomial with real coefficients can be factored in the form

A(x− r1)m1(x− r2)m2 · · · (x− rk)mk (x2+a1x+b1)n1(x2+a2x+b2)n2 · · · (x2+alx+bl)nl ,

where each factor is distinct, the mi, lk are positive integers and A,ri,ai,bi are real numbers.

Homework

5.9.1 Problem Find the cubic polynomial p having zeroes at x =
−1,2,3 and satisfying p(1) =−24.

5.9.2 Problem How many cubic polynomials with leading coeffi-
cient −2 are there splitting in the set {1,2,3}?

5.9.3 Problem Find the cubic polynomial c having a root of x = 1,
a root of multiplicity 2 at x=−3 and satisfying c(2) = 10.

5.9.4 Problem A cubic polynomial p with leading coefficient 1 sat-
isfies p(1) = 1, p(2) = 4, p(3) = 9. Find the value of p(4).

5.9.5 Problem The polynomial p(x) has integral coefficients and
p(x) = 7 for four different values of x. Shew that p(x) never equals
14.

5.9.6 Problem Find the value of a so that the polynomial

t(x) = x3−3ax2+12

be divisible by x+4..

5.9.7 Problem Let f (x) = x4+ x3+ x2+ x+1. Find the remainder
when f (x5) is divided by f (x).

5.9.8 Problem If p(x) is a cubic polynomial with p(1) = 1, p(2) =
2, p(3) = 3, p(4) = 5, find p(6).

5.9.9 Problem The polynomial p(x) satisfies p(−x) = −p(x).
When p(x) is divided by x−3 the remainder is 6. Find the remainder
when p(x) is divided by x2−9.

5.9.10 Problem Factorise x3+3x2−4x+12 over Z[x].

5.9.11 Problem Factorise 3x4+13x3−37x2−117x+90 over Z[x].

5.9.12 Problem Find a,b such that the polynomial x3+6x2+ax+b
be divisible by the polynomial x2+x−12.

5.9.13 Problem How many polynomials p(x) of degree at least one
and integer coefficients satisfy

16p(x2) = (p(2x))2,

for all real numbers x?



6 Rational Functions and Algebraic Functions

6.1 The Reciprocal Function
294 Definition Given a function f we write f (−∞) for the value that f may eventually approach for large (in absolute value)
and negative inputs and f (+∞) for the value that f may eventually approach for large (in absolute value) and positive input.
The line y= b is a (horizontal) asymptote for the function f if either

f (−∞) = b or f (+∞) = b.

295 Definition Let k > 0 be an integer. A function f has a pole of order k at the point x = a if (x− a)k−1 f (x)→ ±∞ as
x→ a, but (x−a)k f (x) as x→ a is finite. Some authors prefer to use the term vertical asymptote, rather than pole.

296 Example Since x f (x) = 1, f (0−) =−∞, f (0+) = +∞ for f :
R\{0} → R\{0}

x "→
1
x

, f has a pole of order 1 at x= 0.

297 Theorem (Graph of the Reciprocal Function) The graph of the reciprocal function

Rec :
R\{0} → R

x "→
1
x

is concave for x < 0 and convex for x > 0. x "→
1
x
is decreasing for x < 0 and x > 0. x "→

1
x
is an odd function and

Im (Rec) = R\{0}.

Proof: Assume first that 0 < a < b and that λ ∈ [0;1]. By the Arithmetic-Mean-Geometric-Mean Inequality,
Theorem ??, we deduce that

a
b

+
b
a
≥ 2.

Hence the product

(λa+(1−λ )b)
(
λ
a

+
1−λ
b

)

= λ 2+(1−λ )2+λ (1−λ )

(
a
b

+
b
a

)

≥ λ 2+(1−λ )2+2λ (1−λ )

= (λ +1−λ )2

= 1.

Thus for 0< a< b we have

1
λa+(1−λ )b

≤
(
λ
a

+
1−λ
b

)

=⇒ Rec(λa+(1−λ )b)≤ λRec(a)+ (1−λ )Rec(b),

from where x "→
1
x
is convex for x> 0. If we replace a,b by −a,−b then the inequality above is reversed and we

obtain that x "→
1
x
is concave for x< 0.

120
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As Rec(−x) =
1
−x

=−
1
x

=−Rec(x), the reciprocal function is an odd function. Assume a< b are non-zero and
have the same sign. Then

Rec(b)−Rec(a)
b−a

=

1
b
−
1
a

b−a
=−

1
ab

< 0,

since we are assuming that a,b have the same sign, whence x "→
1
x
is a strictly decreasing function whenever

arguments have the same sign. Also given any y ∈ Im (Rec) we have y = Rec(x) =
1
x
, but this equation is

solvable only if y '= 0. and so every real number is an image of Id meaning that Im (Rec) = R\{0}.
❑

298 Example Figures 6.1 through 6.3 exhibit various transformations of y= a(x) =
1
x
. Notice how the poles and the asymp-

totes move with the various transformations.

Figure 6.1: x "→
1
x

Figure 6.2: x "→
1

x−1
−1 Figure 6.3: x "→

1
x+2

+3

Figure 6.4: x "→
1

x−1
−1 Figure 6.5: x "→

∣
∣
∣
∣

1
x−1

−1
∣
∣
∣
∣

Figure 6.6: x "→
1

|x|−1
−1

6.2 Inverse Power Functions

We now proceed to investigate the behaviour of functions of the type x "→
1
xn
, where n> 0 is an integer.

299 Theorem Let n> 0 be an integer. Then

• if n is even, x "→
1
xn
is increasing for x< 0, decreasing for x> 0 and convex for all x '= 0.

• if n is odd, x "→
1
xn
is decreasing for all x '= 0, concave for x< 0, and convex for x> 0.

Thus x "→
1
xn
has a pole of order n at x= 0 and a horizontal asymptote at y= 0.
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300 Example A few functions x "→
1
xn
are shewn in figures 6.7 through 6.12.

Figure 6.7:
x "→

1
x

Figure 6.8:
x "→

1
x2

Figure 6.9:
x "→

1
x3

Figure 6.10:
x "→

1
x4

Figure 6.11:
x "→

1
x5

Figure 6.12:
x "→

1
x6

6.3 Rational Functions

301 Definition By a rational function x "→ r(x) we mean a function r whose assignment rule is of the r(x) =
p(x)
q(x)

, where

p(x) and q(x) '= 0 are polynomials.

We now provide a few examples of graphing rational functions. Analogous to theorem 273, we now consider rational functions

x "→ r(x) =
p(x)
q(x)

where p and q are polynomials with no factors in common and splitting in R.

302 Theorem Let a '= 0 and the ri are real numbers and themi be positive integers. Then the rational function with assignment
rule

r(x) = K
(x−a1)m1(x−a2)m2 · · · (x−ak)mk
(x−b1)n1(x−b2)n2 · · ·(x−bl)nl

,

• has zeroes at x= ai and poles at x= b j.

• crosses the x-axis at x= ai if mi is odd.

• is tangent to the x-axis at x= ai if mi is even.

• has a convexity change at x= ai if mi ≥ 3 and mi is odd.

• both r(b j−) and r(b j+) blow to infinity. If ni is even, then they have the same sign infinity: r(bi+) = r(bi−) = +∞
or r(bi+) = r(bi−) = −∞. If ni is odd, then they have different sign infinity: r(bi+) = −r(bi−) = +∞ or r(bi+) =
−r(bi−) =−∞.

Proof: Since the local behaviour of r(x) is that of c(x− ri)ti (where c is a real number constant) near ri, the
theorem follows at once from Theorem 268 and 299. ❑

303 Example Draw a rough sketch of x "→ (x−1)2(x+2)
(x+1)(x−2)2

.

Solution: " Put r(x) =
(x−1)2(x+2)
(x+1)(x−2)2

. By Theorem 302, r has zeroes at x= 1, and x=−2, and poles at x=−1

and x= 2. As x→ 1, r(x)∼
3
2
(x−1)2, hence the graph of r is tangent to the axes, and positive, around x= 2. As

x→−2, r(x)∼−
9
16

(x+2), hence the graph of r crosses the x-axis at x=−2, coming from positive y-values on

the left of x=−2 and going to negative y=values on the right of x=−2. As x→−1, r(x)∼
4

9(x+1)
, hence the
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graph of r blows to−∞ to the left of x=−1 and to+∞ to the right of x=−1. As x→ 2, r(x)∼
4

3(x−2)2
, hence

the graph of r blows to +∞ both from the left and the right of x= 2. Also we observe that

r(x)∼
(x)2(x)
(x)(x)2

=
x3

x3
= 1,

and hence r has the horizontal asymptote y= 1. A sign diagram for
(x−1)2(x+2)
(x+1)(x−2)2

follows:

]−∞;−2[ ]−2;−1[ ]−1;1[ ]1;2[ ]2;+∞[

The graph of r can be found in figure 6.13. #

Figure 6.13: x "→
(x−1)2(x+2)
(x+1)(x−2)2

Figure 6.14: x "→
(x−3/4)2(x+3/4)2

(x+1)(x−1)

304 Example Draw a rough sketch of x "→ (x−3/4)2(x+3/4)2

(x+1)(x−1)
.

Solution: " Put r(x) =
(x−3/4)2(x+3/4)2

(x+1)(x−1)
. First observe that r(x) = r(−x), and so r is even. By Theorem

302, r has zeroes at x = ±
3
4
, and poles at x = ±1. As x→

3
4
, r(x) ∼ −

36
7

(x− 3/4)2, hence the graph of r is

tangent to the axes, and negative, around x = 3/4, and similar behaviour occurs around x = −
3
4
. As x→ 1,

r(x) ∼
49

512(x−1)
, hence the graph of r blows to −∞ to the left of x = 1 and to +∞ to the right of x = 1. As

x→−1, r(x) ∼ −
49

512(x−1)
, hence the graph of r blows to +∞ to the left of x = −1 and to −∞ to the right of

x=−1. Also, as x→+∞,

r(x)∼
(x)2(x)2

(x)(x)
= x2,
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so r(+∞) = +∞ and r(−∞) = +∞. A sign diagram for
(x−3/4)2(x+3/4)2

(x+1)(x−1)
follows:

]−∞;−1[
]

−1;−
3
4

[ ]

−
3
4
;
3
4

[ ]
3
4
;1
[

]1;+∞[

The graph of r can be found in figure 6.14. #

Homework

6.3.1 Problem Find the condition on the distinct real numbers a,b,c

such that the function x "→
(x−a)(x−b)

x−c
takes all real values for real

values of x. Sketch two scenarios to illustrate a case when the condi-
tion is satisfied and a case when the condition is not satisfied.

6.3.2 Problem Make a rough sketch of the following curves.

1. y=
x

x2−1

2. y=
x2

x2−1

3. y=
x2−1
x

4. y=
x2−x−6
x2+x−6

5. y=
x2+x−6
x2−x−6

6. y=
x

(x+1)2(x−1)2

7. y=
x2

(x+1)2(x−1)2

6.3.3 Problem The rational function q in figure 6.15 has only two
simple poles and satisfies q(x)→ 1 as x→ ±∞. You may assume
that the poles and zeroes of q are located at integer points.

1. Find q(0).

2. Find q(x) for arbitrary x.

3. Find q(−3).
4. To which value does q(x) approach as x→−2+?

Figure 6.15: Problem 6.3.3.

6.4 Algebraic Functions
305 Definition We will call algebraic function a function whose assignment rule can be obtained from a rational function by
a finite combination of additions, subtractions, multiplications, divisions, exponentiations to a rational power.

306 Theorem Let |q|≥ 2 be an integer. If

• if q is even then x "→ x1/q is increasing and concave for q≥ 2 and decreasing and convex for q≤−2 for all x> 0 and it
is undefined for x< 0.

• if q is odd then x "→ x1/q is everywhere increasing and convex for x< 0 but concave for x > 0 if q≥ 3. If q ≤ −3 then
x "→ x1/q is decreasing and concave for x< 0 and increasing and convex for x> 0.
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A few of the functions x "→ x1/q are shewn in figures 6.16 through 6.27.

Figure 6.16:
x "→ x1/2

Figure 6.17:
x "→ x−1/2

Figure 6.18:
x "→ x1/4

Figure 6.19:
x "→ x−1/4

Figure 6.20:
x "→ x1/6

Figure 6.21:
x "→ x−1/6

Figure 6.22:
x "→ x1/3

Figure 6.23:
x "→ x−1/3

Figure 6.24:
x "→ x1/5

Figure 6.25:
x "→ x−1/5

Figure 6.26:
x "→ x1/7

Figure 6.27:
x "→ x−1/7

Homework

6.4.1 Problem Draw the graph of each of the following curves.

1. x "→ (1+x)1/2

2. x "→ (1−x)1/2

3. x "→ 1+(1+x)1/3

4. x "→ 1− (1−x)1/3

5. x "→
√
x+
√
−x



7 Exponential Functions

7.1 Exponential Functions
307 Definition Let a> 0,a '= 1 be a fixed real number. The function

R → ]0;+∞[

x "→ ax
,

is called the exponential function of base a.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 7.1: x "→ ax, a> 1.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 7.2: x "→ ax, 0< a< 1.

We will now prove that the generic graphs of the exponential function resemble those in figures 7.1 and 7.2.

308 Theorem If a > 1, x "→ ax is strictly increasing and convex, and if 0 < a < 1 then x "→ ax is strictly decreasing and
convex.

Proof: Put f (x) = ax. Recall that a function f is strictly increasing or decreasing depending on whether the
ratio

f (t)− f (s)
t− s

> 0 or < 0

for t '= s. Now,
f (t)− f (s)
t− s

=
at−as

t− s
= (as) ·

at−s−1
t− s

.

If a> 1, and t− s> 0 then also at−s > 1.1 If a> 1, and t− s< 0 then also at−s < 1. Thus regardless on whether
t− s> 0 or < 0 the ratio

at−s−1
t− s

> 0,

1The alert reader will find this argument circular! I have tried to prove this theorem from first principles without introducing too many tools. Alas, I feel
tired. . .

126
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whence f is increasing for a> 1. A similar argument proves that for 0< a< 1, f would be decreasing.

To prove convexity will be somewhat more arduous. Recall that f is convex if for arbitrary 0≤ λ ≤ 1 we have

f (λ s+(1−λ )t)≤ λ f (s)+ (1−λ ) f (t),

that is, a straight line joining any two points of the curve lies above the curve. We will not be able to prove this
quickly, we will just content with proving midpoint convexity: we will prove that

f
(
s+ t
2

)

≤
1
2
f (s)+

1
2
f (t).

This is equivalent to

a
s+t
2 ≤

1
2
as+

1
2
at ,

which in turn is equivalent to
2≤ a

s−t
2 +a

t−s
2 .

But the square of a real number is always non-negative, hence
(

a
s−t
4 −a

t−s
4
)2
≥ 0 =⇒ a

s−t
2 +a

t−s
2 ≥ 2,

proving midpoint convexity. ❑

! The line y= 0 is an asymptote for x "→ ax. If a > 1, then ax→ 0 as x→−∞ and ax→ +∞ as x→ +∞. If
0< a< 1, then ax→+∞ as x→−∞ and ax→ 0 as x→+∞.

Homework

7.1.1 Problem Make rough sketches of the following curves.

1. x "→ 2x

2. x "→ 2|x|

3. x "→ 2−|x|

4. x "→ 2x+3

5. x "→ 2x+3

7.2 The number e
Consider now the following problem, first studied by the Swiss mathematician Jakob Bernoulli around the 1700s: Query: If
a creditor lends money at interest under the condition that during each individual moment the proportional part of the annual
interest be added to the principal, what is the balance at the end of a full year?2

Suppose a dollars are deposited, and the interest is added n times a year at a rate of x. After the first time period, the
balance is

b1 =
(

1+
x
n

)

a.

After the second time period, the balance is

b2 =
(

1+
x
n

)

b1 =
(

1+
x
n

)2
a.

Proceeding recursively, after the n-th time period, the balance will be

bn =
(

1+
x
n

)n
a.

The study of the sequence

en =

(

1+
1
n

)n

2“Quæritur, si creditor aliquis pecuniam suam fœnori exponat, ea lege, ut singulis momentis pars proportionalis usuræ annuæ sorti annumeretur; quantum
ipsi finito anno debeatur?”
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thus becomes important. It was Bernoulli’s pupil, Leonhard Euler, who shewed that the sequence
(

1+ 1
n
)n

,n = 1,2,3, . . .
converges to a finite number, which he called e. In other words, Euler shewed that

e= lim
n→∞

(

1+
1
n

)n
. (7.1)

It must be said, in passing, that Euler did not rigourously shewed the existence of the above limit. He, however, gave other
formulations of the irrational number

e= 2.718281828459045235360287471352...,

among others, the infinite series
e= 2+

1
2!

++
1
3!

++
1
4!

++
1
5!

+ · · · , (7.2)

and the infinite continued fraction

e= 2+
1

1+
1

2+
1

1+
1

1+
1

4+
1

1+
1

1+
1

6+
1
· · ·

. (7.3)

We will now establish a series of results in order to prove that the limit in 7.1 exists.

309 Lemma Let n be a positive integer. Then

xn− yn = (x− y)(xn−1+ xn−2y+ xn−3y2+ · · ·+ x2yn−3+ xyn−2+ yn−1).

Proof: The lemma follows by direct multiplication of the dextral side. ❑

310 Lemma If 0≤ a< b, n ∈ N

nan−1 <
bn−an

b−a
< nbn−1.

Proof: By Lemma 309

bn−an

b−a
= bn−1+bn−2a+bn−3a2+ · · ·+b2an−3+ban−2+an−1

< bn−1+bn−1+ · · ·+bn−1+bn−1

= nbn−1,

from where the dextral inequality follows. The sinistral inequality can be established similarly. ❑

311 Theorem The sequence

en =

(

1+
1
n

)n
,n= 1,2, . . .

is a bounded increasing sequence, and hence it converges to a limit, which we call e.
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Proof: By Lemma 310

bn+1−an+1

b−a
≤ (n+1)bn =⇒ bn[(n+1)a−nb]< an+1.

Putting a= 1+
1

n+1
, b= 1+

1
n
we obtain

en =

(

1+
1
n

)n
<

(

1+
1

n+1

)n+1
= en+1,

whence the sequence en,n= 1,2, . . . increases. Again, by putting a= 1, b= 1+
1
2n

we obtain
(

1+
1
2n

)n
< 2 =⇒

(

1+
1
2n

)2n
< 4 =⇒ e2n < 4.

Since en < e2n < 4 for all n, the sequence is bounded. In view of Theorem 515 the sequence converges to a limit.
We call this limit e. ❑

! Since the sequence increases towards e we have

2=

(

1+
1
1

)1
< e.

From the proof of Theorem 311 it stems that 2< e< 4. In fact, in can be shewn that e≈ 2.718281828459045235360287471352 . . .
and so 2< e< 3.

! e is called the natural exponential base. The function x "→ ex has the property that any tangent drawn to the
curve at the point x has slope ex. The notation exp(x) = expx= ex is often used.
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Figure 7.3: 1+ x≤ ex ∀x ∈ R.

312 Theorem If x ∈ R then
1+ x≤ ex,

with equality only for x= 0.

Proof: From figure 7.3, the line y= 1+ x lies below the graph of y= ex, proving the theorem.❑

Replacing x by x−1 we obtain,

313 Corollary
x≤ ex−1, ∀x ∈R.

Equality occurs if and only if x= 1.
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Homework

7.2.1 Problem True or False.

1. ∃t ∈ R such that et =
−9.

2. As x → −∞, 2x →
−∞.

3. ∀x ∈ R, 10 + x2 +
x4 > 2x.

4. x "→ ex is increasing
over R.

5. x "→ ex
πx is increasing

over R.

6. ex≤ ex, ∀x ∈ R.

7.2.2 Problem By using Theorem 312, and the fact that π >
e, prove that eπ > πe.

(Hint: Put x= π
e −1.)

7.2.3 Problem Make a rough sketch of each of the following.

1. x "→ 2x

2. x "→ ex

3. x "→
(
1
2

)x

4. x "→ −1+2x

5. x "→ e|x|

6. x "→ e−|x|

7.2.4 Problem Let n ∈ N,n> 1. Prove that

n!<
(
n+1
2

)n
.

7.2.5 Problem Put

coshx=
ex+ e−x

2

and
sinhx=

ex− e−x

2
.

Prove that
cosh2 x− sinh2 x= 1.

The function x "→ coshx is known as the hyperbolic cosine.
The function x "→ sinhx is known as the hyperbolic sine.

7.2.6 Problem Prove that for n ∈ N,
(

1+
1
n

)n
<

(

1+
1

n+1

)n+1
.

and
(

1+
1
n

)n+1
>

(

1+
1

n+1

)n+2
.

(Hint: Use a suitable choice of a and b in Lemma 310.)

7.2.7 Problem Prove that the function x "→
x

ex−1
+
x
2
is

even.

7.3 Arithmetic Mean-Geometric Mean Inequality
Using Corollary 313, we may prove, à la Pólya, the Arithmetic-Mean-Geometric-Mean Inequality (AM-GM Inequality, for
short).

314 Theorem (Arithmetic-Mean-Geometric-Mean Inequality) Let

a1,a2, . . . ,an

be non-negative real numbers. Then
(a1a2 · · ·an)1/n ≤

a1+a2+ · · ·+an
n

.

Equality occurs if and only if a1 = a2 = . . . = an.

Proof: Put
Ak =

nak
a1+a2+ · · ·+an

,

and Gn = a1a2 · · ·an. Observe that

A1A2 · · ·An =
nnGn

(a1+a2+ · · ·+an)n
,

and that
A1+A2+ · · ·+An = n.

By Corollary 313, we have
A1 ≤ exp(A1−1),
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A2 ≤ exp(A2−1),

...

An ≤ exp(An−1).

Since all the quantities involved are non-negative, we may multiply all these inequalities together, to obtain,

A1A2 · · ·An ≤ exp(A1+A2+ · · ·+An−n).

In view of the observations above, the preceding inequality is equivalent to

nnGn
(a1+a2+ · · ·+an)n

≤ exp(n−n) = e0 = 1.

We deduce that

Gn ≤
(
a1+a2+ · · ·+an

n

)n
,

which is equivalent to

(a1a2 · · ·an)1/n ≤
a1+a2+ · · ·+an

n
.

Now, for equality to occur, we need each of the inequalities Ak ≤ exp(Ak− 1) to hold. This occurs, in view of
Corollary 313 if and only if Ak = 1, ∀k, which translates into a1 = a2 = . . . = an.. This completes the proof. ❑

315 Corollary (Harmonic-Mean-Geometric-Mean Inequality) If

a1,a2, . . . ,an

are positive real numbers, then
n

1
a1 + 1

a2 + · · ·+ 1
an

≤ n√a1a2 · · ·an.

Proof: By the AM-GM Inequality,

n

√

1
a1

·
1
a2

· · ·
1
an
≤

1
a1

+ 1
a2

+ · · ·+ 1
an

n
,

from where the result follows by rearranging. ❑

316 Example The sum of two positive real numbers is 100. Find their maximum product.

Solution: " Let x and y be the numbers. We use the AM-GM Inequality for n= 2. Then

√
xy≤

x+ y
2

.

In our case, x+ y= 100, and so
√
xy≤ 50,

which means that the maximum product is xy ≤ 502 = 2500. If we take x = y = 50, we see that the maximum
product is achieved for this choice of x and y. #

317 Example From a rectangular cardboard piece measuring 75× 45 a square of side x is cut from each of its corners in
order to make an open box. See figure 7.4. Find the function x "→V (x) that gives the volume of the box as a function of x, and
obtain an upper bound for the volume of this box.
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Solution: " From the diagram shewn, the height of the box is x, its length 75−2x and its width 45−2x. Hence

V (x) = x(75−2x)(45−2x).

Now, if we used the AM-GM Inequality for the three quantities x, 80−2x, and 50−2x, we would obtain

V (x) = x(75−2x)(45−2x)

<

(
x+75−2x+45−2x

3

)3

=

(
120−3x

3

)3

= (40− x)3.

(We use the strict inequality sign because we know that equality will never be achieved: 75− 2x never equals
45− 2x.) This has the disadvantage of depending on x. In order to overcome this, we use the following trick.
Consider, rather, the three quantities 4x, 75−2x, and 45−2x. Then

4V (x) = 4x(75−2x)(45−2x)

<

(
4x+75−2x+45−2x

3

)3

=

(
120
3

)3

= 64000.

This means that
V (x) <

64000
4

= 16000.

#

x

x

x

x

x

x

x

x

Figure 7.4: Example 317.

! Later in calculus, you will see that the volume is

V (x)≤ (20−
5
2
√
19)(35+5

√
19)(5+5

√
19),

and that the maximum is achieved when
x= 20−

5
2
√
19.

318 Example Find the maximum value of the function f :
[0;1] → R

x "→ x(1− x)2
.
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Solution: " Observe that for x ∈ [0;1] both x and 1− x are non-negative. We maximise, rather, 2 f (x) via the
AM-GM Inequality.

2 f (x) = 2x(1− x)2 = 2x(1− x)(1− x)≤
(
2x+1− x+1− x

3

)3
=
8
27

.

Thus
f (x)≤

1
2
·
8
27

=
4
27

.

The maximum value is attained when 2x= 1− x, that is, when x= 1
3 . #

Homework

7.3.1 Problem Let x,y,z be any real numbers. Prove that

3x2y2z2 ≤ x6+ y6+ z6.

7.3.2 Problem The sum of 5 positive real numbers is S. What
is their maximum product?

7.3.3 Problem Use AM-GM to prove that coshx ≥ 1, ∀x ∈
R.

7.3.4 Problem Maximise the following functions over [0;1].

1. a : x "→ x(1− x)3.

2. b : x "→ x2(1− x)2.

3. c : x "→ x2(1− x)3.

7.3.5 Problem Prove that of all rectangular boxes with a
given surface area, the cube has the largest volume.



8 Logarithmic Functions

8.1 Logarithms

Recall that if a> 0,a '= 1 is a fixed real number,
R → ]0;+∞[

x "→ ax
maps a real number x to a positive number y, i.e., ax = y.

We call x the logarithm of y to the base a, and we write x= loga y. In other words, the function
R → ]0;+∞[

x "→ ax
has inverse

]0;+∞[ → R

x "→ loga x
.1

319 Example log5 25= 2 since 52 = 25.

320 Example log2 1024= 10 since 210 = 1024.

321 Example log3 27= 3 since 33 = 27.

322 Example log190123456 1= 0 as 1901234560 = 1.

! If a > 0,a '= 1, it should be clear that loga 1 = 0, loga a= 1, and in general loga at = t, where t is any real
number.

323 Example log√2 8= log21/2 (21/2)6 = 6.

324 Example log√2 32= log21/2 (21/2)10 = 10.

325 Example log3√3 81
8√27= log33/2 (33/2)(2/3)(35/8) =

2
3
·
35
8

=
35
12
.

Aliter: We seek a solution x to

(3
√
3)x = 81 8√27

1 In higher mathematics, and in many computer algebra programmes like Maple$, the notation “log” without indicating the base, is used for the natural
logarithm of base e. Misguided authors, enemies of the State, communists,Al-Qaeda members, vegetarians and other vile criminals use “log” in calculators
and in lower mathematics to denote the logarithm of base 10, and use “ln” to denote the natural logarithm. This makes things somewhat confusing. In these
notes we will denote the logarithm base 10 by “log10” and the natural logarithm by “loge”, which is hardly original but avoids confusion.

134
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Expressing the sinistral side as powers of 3, we have

(3
√
3)x = (3 ·31/2)x

= (31+1/2)x

= (33/2)x

= 33x/2

Also, the dextral side equals

81 8√27 = 34 · (33)1/8

= 34+3/8

= 335/8

Thus (3
√
3)x = 81 8√27 implies that 33x/2 = 335/8 or

3x
2

=
35
8
from where x= 35

12 .
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Figure 8.1: x "→ loga x,a > 1
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Figure 8.2: x "→ loga x,0< a< 1.

Since x "→ ax and x "→ loga x are inverses, the graph of x "→ loga x is symmetric with respect to the line y= x to the graph of
x "→ ax. For a> 1,x "→ ax is increasing and convex, x "→ loga x, a> 1 will be increasing and concave, as in figure 8.1. Also,
for 0< a< 1,x "→ ax is decreasing and convex, x "→ loga x, 0< a< 1 will be decreasing and concave, as in figure 8.2.

326 Example Between which two integers does log2 1000 lie?

Solution: " Observe that 29 = 512< 1000< 1024= 210. Since x "→ log2 x is increasing, we deduce that
log2 1000 lies between 9 and 10. #

327 Example Find ?log3 201@.

Solution: " 34 = 81< 201< 243= 35. Hence ?log3 201@= 4. #

328 Example Which is greater log5 7 or log8 3?

Solution: " Clearly log5 7> 1> log8 3. #

329 Example Find the integer that equals

?log2 1@+ ?log2 2@+ ?log2 3@+ ?log2 4@+ · · ·+ ?log2 66@.
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Solution: " Firstly, log2 1= 0. We may decompose the interval [2;66] into dyadic blocks, as

[2;66] = [2;4[∪[4;8[∪[8;16[∪[16, ;32[∪[32, ;64[∪[64;66].

On the first interval there are 4−2= 2 integers with ?log2 x@= 1,x ∈ [2;4[. On the second interval there are
8−4= 4 integers with ?log2 x@= 2,x ∈ [4;8[. On the third interval there are 16−8= 8 integers with
?log2 x@= 3,x ∈ [8;16[. On the fourth interval there are 32−16= 16 integers with ?log2 x@= 4,x ∈ [16;32[.
On the fifth interval there are 64−32= 32 integers with ?log2 x@= 5,x ∈ [32;64[. On the sixth interval there
are 66−64+1= 3 integers with ?log2 x@= 6,x ∈ [64;66]. Thus

?log2 1@+ ?log2 2@+ ?log2 3@+

+?log2 4@+ · · ·+ ?log2 66@

= 2(1)+4(2)+8(3)+

+16(4)+32(5)+3(6)

= 276.

#

330 Example What is the natural domain of definition of x "→ log2(x2−3x−4)?

Solution: " We need x2−3x−4= (x−4)(x+1) > 0. By making a sign diagram, or looking at the graph of
the parabola y= (x−4)(x+1) we see that this occurs when x ∈]−∞;−1[∪]4;+∞[. #

331 Example What is the natural domain of definition of x "→ log|x|−4(2− x)?

Solution: " We need 2− x> 0 and |x|−4 '= 1. Thus x< 2 and x '= 5,x '=−5. We must have
x ∈]−∞;−5[∪]−5;2[. #

Homework

8.1.1 Problem True or False.

1. ∃x ∈ R such that
log4 x= 2.

2. ∃x ∈ R such that
log4 x=−2.

3. log2 1= 0.
4. log2 0= 1.

5. log2 2= 1.

6. x "→ log1/5 x is increasing
over R∗+.

7. ∀x> 0,(log5 x)2 = log5 x2.

8. log3 201= 4.

8.1.2 Problem Compute the following.

1. log1/3 243
2. log10 .00001
3. log.001 100000

4. log9
1
3

5. log1024 64

6. log52/3 625

7. log2√2 32
5√2

8. log2 .0625

9. log.0625 2

10. log3
4
√

729 3
√

9−127−4/3

8.1.3 Problem Let a> 0,a '= 1. Compute the following.
1. loga

4√a8/5

2. loga
3√a−15/2

3. loga
1
a1/2

4. loga3 a6

5. loga2 a3

6. loga5/6 a7/25

8.1.4 Problem Make a rough sketch of the following.
1. x "→ log2 x
2. x "→ log2 |x|
3. x "→ 4+ log1/2 x
4. x "→ 5− log3 x
5. x "→ 2− log1/4 x
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6. x "→ log5 x
7. x "→ log5 |x|
8. x "→ | log5 x|
9. x "→ | log5 |x||
10. x "→ 2+ loge |x|
11. x "→ −3+ log1/2 |x|
12. x "→ 5− | log4 x|

8.1.5 Problem Prove that for x> 0,

1−x ≤− loge x.

8.1.6 Problem Prove that for x> 0 we have

xe ≤ ex.

Use this to prove that for x> 0,

loge x≤
x
e
.

8.1.7 Problem Find the natural domain of definition of the
following.

1. x "→ log2(x2−4)

2. x "→ log2(x2+4)

3. x "→ log2(4−x2)

4. x "→ log2( x+1x−2 )

5. x "→ logx2+1(x2+1)

6. x "→ log1−x2 x

8.2 Simple Exponential and Logarithmic Equations
Recall that for a> 0, a '= 1, b> 0 the relation ax = b entails x= loga b. This proves useful in solving the following
equations.

332 Example Solve the equation
log4 x=−3.

Solution: " x= 4−3 =
1
64
. #

333 Example Solve the equation
log2 x= 5.

Solution: " x= 25 = 32. #

334 Example Solve the equation
logx 16= 2.

Solution: " 16= x2. Since the base must be positive, we have x= 4. #

335 Example Solve the equation 3x = 2.

Solution: " By definition, x= log3 2. #

336 Example Solve the equation 9x−5 ·3x+6= 0.

Solution: " We have
9x−5 ·3x+6= (3x)2−5 ·3x+6= (3x−2)(3x−3).

Thus either 3x−2= 0 or 3x−3= 0. This implies that x= log3 2 or x= 1. #

337 Example Solve the equation 25x−5x−6= 0.

Solution: " We have
25x−5x−6= (5x)2−5x−6= (5x+2)(5x−3),

whence 5x−3= 0 or x= log5 3 as 5x+2= 0 does not have a real solution. (Why?) #
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Since x "→ ax and x "→ loga x are inverses, we have

x= aloga x ∀a> 0, a '= 1, ∀x> 0 (8.1)

Thus for example, 5log5 4 = 4, 26log26 8 = 8. This relation will prove useful in solving some simple equations.

338 Example Solve the equation
log2 log4 x=−1.

Solution: " As log2 log4 x=−1, we have

log4 x= 2log2 log4 x = 2−1 =
1
2
.

Hence x= 4log4 x = 41/2 =
√
4= 2. #

339 Example Solve the equation
log2 log3 log5 x= 0

Solution: " Since log2 log3 log5 x= 0 we have

log3 log5 x= 2log2 log3 log5 x = 20 = 1.

Hence
log5 x= 3log3 log5 x = 31 = 3.

Finally x= 5log5 x = 53 = 125. #

340 Example Solve the equation
log2 x(x−1) = 1.

Solution: " We have x(x−1) = 21 = 2. Hence x2− x−2= 0. This gives x= 2 or x=−1. Check that both are
indeed solutions! #

341 Example Solve the equation loge+x e8 = 2.

Solution: " We have (e+ x)2 = e8 or e+ x= ±e4. Now the base e+ x cannot be negative, so we discard the
minus sign alternative. The only solution is when e+ x= e4, that is, x= e4− e. #

Homework

8.2.1 Problem Find real solutions to the following equations for x.
1. logx 3= 4
2. log3 x= 4
3. log4 x= 3
4. logx−2 9= 2
5. log|x| 16= 4
6. 23x−2 = 0
7. (2x−3)(3x−2)(6x−1) = 0

8. 4x−9 ·2x +14 = 0

9. 49x−2 ·7x +1 = 0

10. 36x−2 ·6x = 0

11. 36x +6x−6= 0

12. 5x +12 ·5−x = 7

13. log2 log3 x= 2

14. log3 log5 x=−1

8.3 Properties of Logarithms
A few properties of logarithms that will simplify operations with them will now be deduced.
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342 Theorem If If a> 0,a '= 1, M > 0, and α is any real number, then

loga Mα = α loga M (8.2)

Proof: Let x= loga M. Then ax =M. Raising both sides of this equality to the exponent α, one gathers
aαx =Mα . But this entails that logaMα = αx= α(loga M), which proves the theorem. ❑

343 Example How many digits does 8330 have?

Solution: " Let n be the integer such that 10n < 8330 < 10n+1. Clearly then 8330 has n+1 digits. Since
x "→ log10 x is increasing, taking logarithms base 10 one has n< 330log10 8< n+1. Using a calculator, we see
that 298.001< 330log10 8< 298.02, whence n= 298 and so 8330 has 299 digits. #

344 Example If loga t = 2, then loga t3 = 3loga t = 3(2) = 6.

345 Example log5 125= log5 53 = 3log5 5= 3(1) = 3.

346 Theorem Let a> 0,a '= 1, M > 0, and let β '= 0 be a real number. Then

logaβ M =
1
β
loga M. (8.3)

Proof: Let x= loga M. Then ax =M. Raising both sides of this equality to the power
1
β
we gather

ax/β =M1/β . But this entails that
logaM1/β =

x
β

=
1
β

(loga M),

which proves the theorem. ❑

347 Example Given that log8√2 1024 is a rational number, find it.

Solution: " We have

log8√2 1024= log27/2 1024=
2
7
log2 210 =

2
7
·10log2 2=

20
7

.

#

348 Theorem If a> 0,a '= 1, M > 0, N > 0 then

loga MN = loga M+ loga N (8.4)

In words, the logarithm of a product is the sum of the logarithms.

Proof: Let x= loga M and let y= loga N. Then ax =M and ay = N. This entails that ax+y = axay =MN. But
ax+y =MN entails x+ y= loga MN, that is

loga M+ loga N = x+ y= loga MN,

as required. ❑

349 Example If loga t = 2, loga p= 3 and loga u3 = 21, find loga t3pu.

Solution: " First observe that loga t3pu= loga t3+ loga p+ loga u. Now, loga t3 = 3loga t = 6. Also,
21= loga u3 = 3loga u, from where loga u= 7. Hence

loga t3pu= loga t3+ loga p+ loga u= 6+3+7= 16.

#
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350 Example Solve the equation
log2 x+ log2(x−1) = 1.

Solution: " If x> 1 then
log2 x+ log2(x−1) = log2 x(x−1).

This entails x(x−1) = 2, from where x=−1 or x= 2. The solution x=−1 must be discarded, as we need
x> 1. #

351 Theorem If a> 0,a '= 1, M > 0, N > 0 then

loga
M
N

= logaM− loga N (8.5)

Proof: Let x= loga M and let y= loga N. Then ax =M and ay = N. This entails that ax−y =
ax

ay
=
M
N
. But

ax−y =
M
N
entails x− y= loga M

N , that is

loga M− loga N = x− y= loga
M
N

,

as required. ❑

352 Example Let loga t = 2, loga p= 3 and loga u3 = 21, find loga
p2

tu
.

Solution: " First observe that

loga
p2

tu
= loga p2− loga tu= 2loga p− (loga t+ loga u).

This entails that

loga
p2

tu
= 2(3)− (2+21)=−17.

#

353 Theorem If a> 0,a '= 1, b> 0,b '= 1 andM > 0 then

loga M =
logb M
logb a

. (8.6)

Proof: From the identity blogb M =M, we obtain, upon taking logarithms base a on both sides

loga
(

blogb M
)

= loga M.

By Theorem 3.4.1

loga
(

blogb M
)

= (logb M)(loga b),

whence the theorem follows. ❑

354 Example Given that
(log2 3) · (log3 4) · (log4 5) · · · (log511 512)

is an integer, find it.
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Solution: " Choose a> 0,a '= 1. Then

(log2 3) · (log3 4) · (log4 5) · · · (log511 512) =
loga 3
loga 2

·
loga 4
loga 3

·
loga 5
loga 4

· · ·
loga 512
loga 511

=
loga 512
loga 2

.

But
loga 512
loga 2

= log2 512= log2 29 = 9,

so the integer sought is 9. #

355 Corollary If a> 0,a '= 1, b> 0,b '= 1 then

loga b=
1

logb a
. (8.7)

Proof: Let M = b in the preceding theorem. ❑

356 Example Given that logn t = 2a, logs n= 3a2, find logt s in terms of a.

Solution: " We have

logt s=
logn s
logn t

.

Now, logn s=
1

logs n
=

1
3a2

. Hence

logt s=
logn s
logn t

=
1
3a2

2a
=

1
6a3

.

#

357 Example Given that loga 3= s−3, log√3 b= s2+2, log9 c= s3, write log3
a2b5

c4
as a polynomial in s.

Solution: " Observe that

log3
a2b5

c4
= 2log3 a+5log3 b−4log3 c,

so we seek information about log3 a, log3 b and log3 c. Now,

log3 a=
1

loga 3
= s3, log3 b=

1
2
log√3 b=

1
2
s2+1

and log3 c= 2log9 c= 2s3. Hence

log3
a2b5

c4
= 2s3+

5
2
s2+5−8s3 =−6s3+

5
2
s2+5.

#

358 Example Given that .63< log3 2< .631, find the smallest positive integer a such that 3a > 2102.

Solution: " Since x "→ log3 x is an increasing function, we have a log3 3> 102log3 2, that is, a> 102log3 2.
Using the given information, 64.26< 102log3 2< 64.362, which means that a= 65 is the smallest such integer.
#
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359 Example Assume that there is a positive real number x such that

xx
x.

..

= 2,

where there is an infinite number of x’s. What is the value of x?

Solution: " Since xx
x.

..

= 2, one has

2= xx
x.

..

= x2,

whence, as x is positive, x=
√
2. #

! Euler shewed that the equation

ax
x.

..

= x

has real roots only for a ∈ [e−e;e1/e].

360 Example How many real positive solutions does the equation

x(x
x) = (xx)x

have?

Solution: " Assuming x> 0 we have xx loge x= x loge xx or xx loge x= x2 loge x. Thus (loge x)(xx− x2) = 0.
Thus either loge x= 0, in which case x= 1, or xx = x2, in which case x= 2. The equation has therefore only two
positive solutions. #

361 Example The non-negative integers smaller than 10n are split into two subsets A and B. The subset A contains all those
integers whose decimal expansion does not contain a 5, and the set B contains all those integers whose decimal expansion
contains at least one 5. Given n, which subset, A or B is the larger set? One may use the fact that log10 2 := .3010 and that
log10 3 := .4771.

Solution: " The set B contains 10n−9n elements and the set A contains 9n elements. Now if 10n−9n > 9n
then 10n > 2 ·9n and taking logarithms base 10 we deduce

n> log10 2+2n log10 3.

Thus

n>
log10 2

1−2log10 3
:= 6.57...

Therefore, if n≤ 6, A has more elements than B and if n> 6, B has more elements than A. #

362 Example Shew that if a,b,c, are real numbers with a2 = b2+ c2,a+b> 0,a+b '= 1,a−b> 0,a−b '= 1, then

loga−b c+ loga+b c= 2(loga−b c)(loga+b c).

Solution: " As c2 = a2−b2 = (a−b)(a+b), upon taking logarithms base a+b we have

2loga+b c= loga+b (a−b)(a+b) = 1+ loga+b (a−b) (8.8)

Similarly, taking logarithms base a−b on the identity c2 = (a−b)(a+b)we obtain

2loga−b c= loga−b (a−b)(a+b) = 1+ loga−b (a+b) (8.9)
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Multiplying these last two identities,

4(loga−b c)(loga+b c) = (1+ loga+b (a−b))(1+ loga−b (a+b))

= 1+ loga−b (a+b)+ loga+b (a−b)

+(loga−b (a+b))(loga+b (a−b))

= 2+ loga−b (a+b)+ loga+b (a−b)

= 2+ loga−b c
a−b + loga+b c

a+b

= loga−b c+ loga+b c,

as we wanted to shew. #

363 Example If log12 27= a prove that log6 16=
4(3−a)
3+a

.

Solution: " First notice that a= log12 27= 3log12 3=
3

log3 12
=

3
1+2log3 2

, whence log3 2=
3−a
2a

or

log2 3=
2a
3−a

. Also

log6 16 = 4log6 2

= 4
log2 6

= 4
1+log2 3

= 4
1+ 2a

3−a

= 4(3−a)
3+a ,

as required. #

364 Example Solve the system
5
(

logx y+ logy x
)

= 26

xy= 64

Solution: " Clearly we need x> 0,y> 0,x '= 1,y '= 1. The first equation may be written as

5
(

logx y+
1

logx y

)

= 26 which is the same as (logx y−5)(logy x−
1
5
) = 0. Thus the system splits into the two

equivalent systems (I) logx y= 5,xy= 64 and (II) logx y= 1/5,xy= 64. Using the conditions
x> 0,y> 0,x '= 1,y '= 1 we obtain the two sets of solutions x= 2,y= 32 or x= 32,y= 2. #

Homework

8.3.1 Problem Find the exact value of

1
log2 1996!

+
1

log3 1996!
+

1
log4 1996!

+ · · ·+
1

log1996 1996!
.

8.3.2 Problem 1. log4MN = log4M+ logN ∀M,N ∈ R.

2. log5M2 = 2log5M∀M ∈R.

3. ∃M ∈R such that log5M2 = 2log5M.

8.3.3 Problem Given that loga p= 2, logam= 9, loga n=−1 find
1. loga p7

2. loga7 p
3. loga4 p2n3
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4. loga6
m3n
p6

8.3.4 Problem Which number is larger, 31000 or 5600?

8.3.5 Problem Find (log3 169)(log13 243) without recourse of a
calculator or tables.

8.3.6 Problem Find
1

log2 36
+

1
log3 36

without recourse of a

calculator or tables.

8.3.7 Problem Given that loga p= b, logq a= 3b−2, find logp q in
terms of b.

8.3.8 Problem Given that log2 a= s, log4 b= s2, logc2 8= 2
s3+1 ,

write log2
a2b5

c4
as a function of s.

8.3.9 Problem Given that loga2(a2+1) = 16, find the value of

loga32 (a+ 1
a )

.

8.3.10 Problem Write without logarithms. Assume the proper
restrictions on the variables wherever necessary.

1. (aα )−β logαS Nγ

2. − log8 log4 log2 16

3. log0.75 log2
√

−2√0.125

4.
(

5(log7 5)
−1

+(− log10 0.1)
−1/2

)1/3

5. ba
(logb logb N)/(logb a)

6. 2(log3 5)−5(log3 2)

7.
(
1
49

)1+(log7 2)
+5−(log1/5 7)

8.3.11 Problem A sheet of paper has approximately 0.1 mm of
thickness. Suppose you fold the sheet by halves, thirty times
consecutively. (1) What is the thickness of the folded paper?, (2)
How many times should you fold the sheet in order to obtain the
distance from Earth to the Moon? (the distance from Earth to the
Moon is about 384 000 km.)

8.3.12 Problem How many digits does 112000 have?

8.3.13 Problem Let A= log6 16,B= log12 27. Find integers a,b,c
such that (A+a)(B+b) = c.

8.3.14 Problem Given that logab a= 4, find

logab
3
√
a√
b
.

8.3.15 Problem The number 5100 is written in binary (base-2)
notation. How many binary digits does it have?

8.3.16 Problem Prove that if x> 0,a> 0,a '= 1 then x1/loga x = a.

8.3.17 Problem Let a,b,x be positive real numbers distinct from 1.
When is it true that

4(loga x)
2+3(logb x)

2 = 8(loga x)(logb x) ?

8.3.18 Problem Prove that log3 π+ logπ 3> 2.

8.3.19 Problem Solve the equation

4 ·9x−1 = 3
√
22x+1

8.3.20 Problem Solve the equation

5x−1+5(0.2)x−2 = 26

8.3.21 Problem Solve the equation

25x−12 ·2x− (6.25)(0.16)x = 0

8.3.22 Problem Solve the equation

log3(3
x−8) = 2−x

8.3.23 Problem Solve the equation

log4(x
2−6x+7) = log4(x−3)

8.3.24 Problem Solve the equation

log3(2−x)− log3(2+x)− log3 x+1= 0

8.3.25 Problem Solve the equation

2log4(2x) = log4(x
2+75)

8.3.26 Problem Solve the equation

log2(2x) =
1
4
log2(x−15)

4

8.3.27 Problem Solve the equation

log2 x
log4 2x

=
log8 4x
log16 8x

8.3.28 Problem Solve the equation

log3 x= 1+ logx 9

8.3.29 Problem Solve the equation

25log2 x = 5+4xlog2 5

8.3.30 Problem Solve the equation

xlog10 2x = 5
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8.3.31 Problem Solve the equation

|x−3|(x
2−8x+15)/(x−2) = 1

8.3.32 Problem Solve the equation

log2x−1
x4+2
2x+1

= 1

8.3.33 Problem Solve the equation

log3x x= log9x x

8.3.34 Problem Solve

log2 x+ log4 y+ log4 z= 2,

log3 x+ log9 y+ log9 z= 2,

log4 x+ log16 y+ log16 z= 2.

8.3.35 Problem Solve the equation

x0.5log√x(x
2−x) = 3log9 4.



9 Goniometric Functions

9.1 The Winding Function
Recall that a circle of radius r has a circumference of 2πr units of length. Hence a unit circle, i.e., one with r = 1, has
circumference 2π .

365 Definition A radian is a
1
2π
th part of the circumference of a unit circle.

1

Figure 9.1: A radian.

Since 1
2π ≈ 0.16, a radian is about

4
25
of the circumference of the unit circle. A quadrant or quarter part of a circle has arc

length of π4 radians. A semicircle has arc length
2π
2 = π radians.

!
1. A radian is simply a real number!
2. If a central angle of a unit circle cuts an arc of x radians, then the central angle measures x radians.
3. The sum of the internal angles of a triangle is π radians.

Suppose now that we cut a unit circle into a “string” and use this string to mark intervals of length 2π on the real line. We put
an endpoint 0, mark off intervals to the right of 0 with endpoints at 2π ,4π ,6π , . . . , etc. We start again, this time going to the
left and marking off intervals with endpoints at −2π ,−4π ,−6π , . . ., etc., as shewn in figure 9.2.

0π 2π 4π 6π 8π−2π−4π−6π−8π

Figure 9.2: The Real Line modulo 2π .

We have decomposed the real line into the union of disjoint intervals

. . .∪ [−6π ;−4π [∪[−4π ;−2π [∪[−2π ;0[∪[0;2π[∪[2π ;4π [∪[4π ;6π[∪ . . .

Observe that each real number belongs to one, and only one of these intervals, that is, there is a unique integer k such that if
x ∈ R then x ∈ [2πk;(2k+2)π [. For example 100 ∈ [30π ;32π [ and −9 ∈ [−4π ;−2π [.

146
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366 Definition Given two real numbers a and b, we say that a is congruent to bmodulo 2π , written a≡ b mod 2π , if
a−b
2π

is an integer. If
a−b
2π

is not an integer, we say that a and b are incongruentmodulo 2π and we write a '≡ b mod 2π .

For example, 5π ≡−7π mod 2π , since
5π− (−7π)

2π
=
12π
2π

= 6, an integer. However, 5π '≡ 2π mod 2π as
5π−2π
2π

=
3π
2π

=
3
2
, which is not an integer.

367 Definition If a≡ b mod 2π , we say that a and b belong to the same residue class mod 2π . We also say that a and b
are representatives of the same residue class modulo 2π .

368 Theorem Given a real number a, all the numbers of the form a+2πk, k ∈ Z belong to the same residue class modulo
2π .

Proof: Take two numbers of this form, a+2πk1 and a+2πk2, say, with integers k1,k2. Then

(a+2πk1)− (a+2πk2)
2π

= k1− k2,

which being the difference of two integers is an integer. This shews that a+2πk1≡ a+2πk2 mod 2π . ❑

369 Example Take x= π
3 . Then

π
3 ≡ π

3 +2π ≡ 7π
3 mod 2π

≡ π
3 −2π ≡ − 5π3 mod 2π

≡ π
3 +4π ≡ 13π

3 mod 2π

≡ π
3 −4π ≡ − 11π3 mod 2π

Thus all of
π
3

,
7π
3

,−
5π
3

,
13π
3

,−
11π
3

belong to the same residue class mod 2π .

! If a≡ b mod 2π then there exists an integer k such that a= b+2πk.

Given a real number x, it is clear that there are infinitely many representatives of the class to which x belongs, as we can add
any integral multiple of 2π to x and still lie in the same class. However, exactly one representative x0 lies in the interval
[0,2π [, as we saw above. We call x0 the canonical representative of the class (to which x belongs modulo 2π).

To find the canonical representative of the class of x, we simply look for the integer k such that 2kπ ≤ x< (2k+2)π . Then
then 0≤ x−2kπ < 2π and so x−2πk is the canonical representative of the class of x.

370 Definition We will call the procedure of finding a canonical representative for the class of x, reductionmodulo 2π .

371 Example Reduce 5π mod 2π .

Solution: " Since 4π < 5π < 6π , we have 5π ≡ 5π−4π ≡ π mod 2π . Thus π is the canonical representative
of the class to which 5π belongs, modulo 2π .

#
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To speed up the computations, we may avail of the fact that 2πk≡ 0 mod 2π , that is, any integral multiple of 2π is
congruent to 0 mod 2π .

Quadrant I (+,+)

Quadrant IV (+,−)

Quadrant II (−,+)

Quadrant III (−,−)

Po
sit
iv
e
di
re
ct
io
n

Figure 9.3: The unit circle on the Cartesian Plane.

0 radians

π
6
radi
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π 4
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s
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π 2
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s

2π
3
ra
di
an
s

3π
4r

ad
ian

s

5π
6rad

ians

π radians

7π
6
radians 5π

4
radians

4π3radians

3π2
radians

5π3
radians

7π4 radians

11π6 radians

Figure 9.4: The unit circle on the Cartesian Plane.

372 Example Reduce
200π
7

modulo 2π .

Solution: "
200π
7
≡
196π+4π

7
≡ 28π+

4π
7
≡
4π
7

mod 2π . #

373 Example Reduce−5π
7
modulo 2π .

Solution: " −
5π
7
≡ 2π−

5π
7
≡
9π
7

mod 2π . #

374 Example Reduce 7 mod 2π .

Solution: " Since 2π < 6.29< 7< 4π , the largest even multiple of π smaller than 7 is 2π , whence 7≡ 7−2π
mod 2π .. #

Place now the centre of a unit circle at the origin of the Cartesian Plane. Choosing the point (1,0) as our departing point (a
completely arbitrary choice), we traverse the circumference of the unit circle counterclockwise (again, the choice is
completely arbitrary). If we traverse 0 units, we are still at (1,0), on the positive portion of the x-axis. If we traverse a
number of units in the interval

]

0; π2
[

, we are in the first quadrant.

If we have traversed exactly
π
2
units, we are at (0,1), on the positive portion of the y-axis. Traversing a number of units in

the interval
]π
2 ;π

[

, puts us in the second quadrant. If we travel exactly π units, we are at (−1,0), the negative portion of the
x-axis. Traversing a number of units in the interval

]

π ; 3π2
[

, puts us in the third quadrant. Traversing exactly 3π2 units puts us
at the point (0,−1), the negative portion of the y-axis. Travelling a number of units in the interval

] 3π
2 ;2π

[

, puts us in the
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fourth quadrant. Finally, travelling exactly 2π units brings us back to (1,0). So, after one revolution around the unit circle,
we are back in already travelled territory. See figure 9.3.

O

x

MM
x0

Figure 9.5: C :R→R2, C (x) =M.

! If we traverse the unit circle clockwise, then the arc length is measured negatively.

We now define a function C :R→R2 in the following fashion. Given a real number x, let x0 be its canonical representative
modulo 2π . Starting at (1,0), traverse the circumference of the unit circle x0 units counterclockwise. Your final destination is
a point on the Cartesian Plane, call itM. We let C (x) =M. See figure 9.5. The function C is called the winding function.

375 Example In what quadrant does C
(

− 283π5
)

lie?

Solution: " Observe that

− 283π5 ≡ −280π−3π
5

≡ −56π− 3π
5

≡ − 3π5

≡ 2π− 3π
5

≡ 7π
5 mod 2π .

Since 7π5 ∈]π ;
3π
2 [, C

(

− 283π5
)

lies in quadrant III.#

376 Example In what quadrant does C (451) lie?

Solution: " Since 71< 451
2π < 71.8, 142π < 451< 144π , and hence 451≡ 451−142π mod 2π . Now,

451−142π ≈ 4.89 ∈
] 3π
2 ;2π

[

, and so C (451) lies in the fourth quadrant. #

377 Example In which quadrant does C (π2) lie?

Solution: " We multiply the inequality 2< π < 4 through by π , obtaining 2π < π2 < 4π , whence the largest
even multiple of π less than π2 is 2π . Therefore π2 ≡ π2−2π mod 2π . Now we claim that

π < π2−2π <
3π
2

.
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The sinistral inequality is easily deduced from the obvious inequality 3π < π2. The dextral inequality is deduced
from the fact that π2 < 3.5π . The inequality π < π2−2π < 3π

2 is thus proven, which means that C (π2) lies in
the third quadrant. #

378 Example Find the members of the set
{π
2 + kπ

3 : k ∈ Z}
}

that belong to the interval [8π ;10π [.

Solution: " The problem is asking for all integers k such that

8π ≤
π
2

+
kπ
3

< 10π .

Now,

8π ≤ π
2 + kπ

3 < 10π ⇐⇒ 8π− π
2 ≤

kπ
3 < 10π− π

2

⇐⇒ 15π
2 ≤

kπ
3 < 19π

2

⇐⇒ 22.5≤ k < 28.5.

Since k is an integer, k ∈ {23,24,25,26,27,28}. The required elements are thus

π
2

+
23π
3

=
49π
6

,

π
2

+
24π
3

=
17π
2

,

π
2

+
25π
3

=
53π
6

,

π
2

+
26π
3

=
55π
6

,

π
2

+
27π
3

=
19π
2

,

π
2

+
28π
3

=
59π
6

.

#

379 Example Is 275π
6
∈
{ π
2 + kπ

3 : k ∈ Z
}

?

Solution: " The problem is asking whether there is an integer k such that

275π
6

=
π
2

+
kπ
3

.

Solving for k we find k= 136, which is an integer. The answer is affirmative and indeed,

275π
6

=
π
2

+
136π
3

.

#

Homework

9.1.1 Problem True or False.
1. 10≡ 8 mod 2π .
2. − 9π7 ≡

5π
7 mod 2π .

3. 1
π ≡

2
π mod 2π .

4. 7π
6 ≡

π
6 mod 2π .

5. −8π41 ≡−
500π
41 mod 2π .

6. x ∈ [−1;0[ then C (x) is in quadrant IV.

9.1.2 Problem Reduce the following real numbers mod 2π .
Determine the quadrant in which their image under C would lie.
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1.
3π
5
;

2. −
3π
5
;

3.
7π
5
,;

4.
8π
57
;

5.
57π
8
;

6.
6π
79
;

7.
790π
7

;

8. 1;

9. 2;

10. 3;

11. 4;

12. 5;

13. 6,;

14. 100,;

15. −3.14;

16. −3.15

9.1.3 Problem Find all the members of the set {
3π
4

+
kπ
5
: k ∈ Z}

that lie in the interval (i) [0;π[; (ii) [−π;0[.

9.1.4 Problem Is
279π
20
∈ {

3π
4

+
3kπ
5

|k ∈ Z}? Is

−
251π
20
∈ {

3π
4

+
3kπ
5

|k ∈ Z}?

9.1.5 Problem Prove that congruence modulo 2π is reflexive, that
is, if a ∈R, then a≡ a mod 2π .

9.1.6 Problem Prove that congruence modulo 2π is symmetric,
that is, if a,b ∈R, and if a≡ b mod 2π then b≡ a mod 2π .

9.1.7 Problem Prove that congruence modulo 2π is transitive, that
is if if a,b,c ∈ R, then a≡ b mod 2π and b≡ c mod 2π imply
a≡ c mod 2π .

9.2 Cosines and Sines: Definitions
Consider any real number x. We find its canonical representative x0 mod 2π and use this to find C (x) =M, as in figure 9.6.

We now project the pointM so obtained ontoC and S on the axes. The cosine function
R → [−1;1]

x "→ cosx
is given by

cos(x) = cosx= OC (the algebraic length of the segmentOC, that is, the signed distance from O toC) and the sine function

R → [−1;1]

x "→ sinx
is given by sin(x) = sinx= OS (the algebraic length of the segmentOS).

O

x

x0

M = (cosx,sinx)
S

C

Figure 9.6: Geometric construction of the cosine and sine functions.

!
1. The farthest right M can go is to (1,0) and the farthest left is to (−1,0). Thus −1≤ cosx≤ 1. Similarly,

the farthest up M can go is to (0,1) and the farthest down it can go is to (0,−1). Hence −1≤ sinx≤ 1.
2. The sine and cosine functions are defined for all real numbers.
3. If a≡ b mod 2π then cosa= cosb and sina= sinb. In other words, the cosine and sine functions are

periodic with period 2π , that is
sin(2π+ x) = sinx ∀x ∈ R, (9.1)

cos(2π+ x) = cosx ∀x ∈ R. (9.2)
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4. The point M has abscissa cosx and ordinate sinx, that is, M = (cosx,sinx).

5. The functions
R → [−1;1]

x "→ cosx
and

R → [−1;1]

x "→ sinx
are surjective (onto) but not injective

(one-to-one).

We may now compute some simple sines and cosines.

380 Example From figure 9.7, if x= 0 then the pointM is (1,0). Thus cos0= 1, sin0= 0. If x=
π
2
the pointM is (0,1).

From this we gather that cos π2 = 0 and sin π2 = 1. If x= π then the pointM is (−1,0). Thus cosπ =−1, sinπ = 0. If x= 3π
2

the pointM is (0,1). From this we gather that cos 3π2 = 0 and sin 3π2 =−1.

0

π 2

π

3π2

(0,1)

(0
,1

)

(−1,0)

(0,−
1)

Figure 9.7: Some values of sin and cos.

x

(cosx,sinx)

(cos(−x),sin(−x))

(cos(π− x),sin(π− x))

(cos(π+ x),sin(π+ x))

Figure 9.8: Symmetry Identities.

381 Definition If K '=−1, we write sinK x,cosK x to denote (sinx)K ,(cosx)K , respectively. sin−1 x,cos−1 x, a are reserved
for when we study inversion later in these notes.

The following relation, known as the Pythagorean Relation is fundamental in the study of circular functions.

382 Theorem (Pythagorean Relation) Let x be any real number. Then

cos2 x+ sin2 x= 1. (9.3)

Proof: Let C (x) =M = (cosx,sinx), as in figure 9.6., where O= (0,0), and S,C are the projections of M onto
the axes. In6OCM, cosx= OC, and sinx= OS=CM. As6OCM is a right triangle and OM = 1, by the
Pythagorean Theorem, we have

cos2 x+ sin2 x= OC2+CM2 = OM2 = 12 = 1,

which completes the proof. ❑

! Pay attention to the notation cos2 x for (cosx)2 and respectively to sin2 x for (sinx)2. Do not confuse these
with cosx2 and sinx2. For example, if x= π then cos2π = (−1)2 = 1 and sin2π = 02 = 0. Since C (π2) lies in
the third quadrant, cosπ2 < 0 and sinπ2 < 0. Hence cos2π '= cosπ2 and sin2π '= sinπ2.

From the Pythagorean Relation,
cosx= ±

√

1− sin2 x
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and
sinx= ±

√

1− cos2 x.

The ambiguity in sign is resolved by specifying in which quadrant C (x) lies, see figure 9.3.

383 Example Let 3π
2

< x< 2π and cosx=
1
3
. Find sinx.

Solution: " C (x) lies in the fourth quadrant, where sinx< 0. We have

sinx=−
√

1− cos2 x=−
√

8
9

=−
2
√
2
3

.

#

384 Example Given that π2 < x< π , and that sinx= 3
5 , find cosx.

Solution: " Since C (x) lies in the second quadrant, the cosine is negative. Hence

cosx=−
√

1− sin2 x=−

√

1−
(
3
5

)2
=−

4
5
.

#

385 Theorem (Symmetry Identities) Let x ∈ R. Then the following are identities.

cos(−x) = cosx, (9.4)

sin(−x) =−sinx, (9.5)

cos(π− x) =−cosx, (9.6)

sin(π− x) = sinx, (9.7)

cos(π+ x) =−cosx, (9.8)

sin(π+ x) =−sinx, (9.9)

Proof: The first identity says that the cosine is an even function; the second that the sine is an odd function.
The third and fourth identities are “supplementary angle” identities. The fifth and the sixth identities are a
“reflexion about the origin.” All of these identities can be derived at once from figure 9.8. ❑

By the 2π-periodicity of the cosine and sine we have

cos(2πk+ x) = cosx, ∀x ∈ R ∀k ∈ Z (9.10)

sin(2πk+ x) = sinx, ∀x ∈ R ∀k ∈ Z. (9.11)

Now,
cos((2k+1)π+ x) = cos(2πk+π+ x) = cos(π+ x) =−cosx

and
sin((2k+1)π+ x) = sin(2πk+π+ x) = sin(π+ x) =−sinx,

whence the following corollary is proved.
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386 Corollary Let x ∈ R and k ∈ Z. Then

cos((2k+1)π+ x) =−cosx (9.12)

and
sin((2k+1)π+ x) =−sinx (9.13)

In other words, if we add even multiples of π to a real number, we get back the same cosine and the sine of the real number.
If we add odd multiples of π to a real number, we get minus the cosine or sine of the real number.

387 Example Write
sin(32π+ x)−18cos(19π− x)+ cos(56π+ x)−9sin(x+17π)

in the form asinx+bcosx.

Solution: " The even multiples of π addends give

sin(32π+ x) = sinx

and
cos(56π+ x) = cosx.

Examining the odd multiples of π addends we see that cos(19π− x) =−cos(−x). But cos(−x) = cosx, as the
cosine is an even function and so

cos(19π− x) =−cosx.

Similarly,
sin(17π+ x) =−sinx.

Upon gathering all of these equalities, we deduce that

sin(32π+ x)−18cos(19π− x)

+cos(56π+ x)−9sin(x+17π)

= sinx−18(−cosx)

+cosx−9sinx

= −8sinx+19cosx.

#

388 Example Prove that cos π4 = sin π4 =
√
2
2 .

Solution: " C (
π
4

) is half-way between C (0) and C (
π
2

). Thus6OCM in figure 9.9 is an isosceles right
triangle. As OC=CM, we have

cos
π
4

= sin
π
4

.

By the Pythagorean Relation,
cos2

π
4

+ sin2
π
4

= 1,

and so 2cos2 π4 = 1. Since C (π4 ) lies in the first quadrant, we take the positive square root. We deduce
cos π4 =

√
2
2 . This implies that sin

π
4 =

√
2
2 . #

389 Example Prove that cos π
3

=
1
2
and that sin

π
3

=

√
3
2
.
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Solution: " In figure 9.10 , A= (cos π3 ,sin
π
3 ), B= (0,0) and C = (1,0). Since BA= BC = 1,6BAC is

isosceles. Thus ∠A= ∠C. Moreover, since the sum of the angles of a triangle is π radians and central ∠B
measures

π
3
radians, the triangle is equilateral. Let D denote the foot of the perpendicular from A to the side

BC. Since6BAC is equilateral, D is halfway of the distance between B andC, which means that =
1
2
. Thus

cos
π
3

=
1
2
.

Also, taking the positive square root (why?)

sin
π
3

=

√

1− cos2
π
3

=

√

1−
(
1
2

)2
=

√
3
2

,

as we wanted to shew. #

390 Example Prove that cos π
6

=

√
3
2
and that sin

π
6

=
1
2
.

Solution: " Reflect the point A= (cos π6 ,sin
π
6 ) about the x-axis to the point C= (cos π6 ,−sin

π
6 ), as in figure

9.11. Observe that since ∠DBA= ∠CBD=
π
6
then ∠CBA=

π
3
. Thus6ABC is equilateral, and so AD= 1

2 ,
which implies that

sin
π
6

=
1
2
.

We deduce that

cos
π
6

=

√

1− sin2
π
6

=

√

1−
(
1
2

)2
=

√
3
2

.

#

M

O C

Figure 9.9: sin π
4 and cos

π
4

B C

A

D

Figure 9.10: sin π
3 and cos

π
3

A

C

B D

Figure 9.11: sin π6 and cos
π
6

The student will do well in memorising the special values deduced above, which are conveniently gathered in the table below.

x sinx cosx

0 0 1

π
6

1
2

√
3
2

π
4

√
2
2

√
2
2

π
3

√
3
2

1
2

π
2 1 0
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391 Example Find cos(−π
6

) and sin(−
π
6

).

Solution: " Since x "→ cosx is an even function, we have

cos(−
π
6

) = cos(
π
6

) =

√
3
2

.

Since x "→ sinx is an odd function, we have

sin(−
π
6

) =−sin(
π
6

) =−
1
2
.

#

392 Example Find cos 7π
6
and sin

7π
6
.

Solution: " By the reflexion about the origin identities

cos
7π
6

= cos(π+
π
6

) =−cos
π
6

=−
√
3
2

and
sin
7π
6

= sin(π+
π
6

) =−sin
π
6

=−
1
2
.

#

393 Example
cos

2π
3

= cos
(

π−
π
3

)

=−cos
(

−
π
3

)

=−cos
π
3

=−
1
2

and

sin
2π
3

= sin
(

π−
π
3

)

=−sin
(

−
π
3

)

= sin
π
3

=

√
3
2

394 Example Find the exact value of

cos
(

−
32
3
π
)

Solution: "

cos
(

− 323 π
)

= cos
( 32π
3
)

= cos(10π+ 2π
3 )

= cos( 2π3 )

= − 12

Aliter:

cos
(

− 323 π
)

= cos
( 32π
3
)

= cos(11π− π
3 )

= −cos(− π
3 )

= −cos
(π
3
)

= − 12
#
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395 Example Find the exact value of

sin
(

−
31
3
π
)

Solution: "

sin
(

− 313 π
)

= −sin
( 31π
3
)

= −sin(10π+ π
3 )

= −sin(π3 )

= −
√
3
2

#

396 Theorem (Complementary Angle Identities) The following identities hold:

cos(
π
2
− x) = sinx ∀x ∈R (9.14)

sin(
π
2
− x) = cosx ∀x ∈R (9.15)

Proof: We will prove the result for x ∈ [0; π2 [. The extension of these identities to all real numbers depends on
Theorem 385 and we leave it as an exercise. In figure 9.12 assume that arc MA (read counterclockwise)
measures x and that x ∈ [0; π4 [. Reflect point A= (cosx,sinx) about the line y= x, to point B= (sinx,cosx) as in
figure 9.12. Arc BT (read counterclockwise) measures x, and so arc MAB measures π

2 − x. This means that
B= (cos(π2 − x),sin(

π
2 − x)), from where the Theorem follows for x ∈]0; π4 [. Assume now that x ∈ [π4 ;

π
2 [. Then

π
2 − x ∈ [0; π4 [, and so we apply the result just obtained to

π
2 − x:

cos
(π
2
− x

)

= sin
(π
2
−
(π
2
− x

))

= sinx,

and
sin
(π
2
− x

)

= cos
(π
2
−
(π
2
− x

))

= cosx.

So, we have established the result for x ∈ [0; π2 [. ❑ y= x

O
M

A

B

Figure 9.12: Complementary Angle Identities.

! Using the complementary angle identities,

sin
π
6

= cos
(π
2
−
π
6

)

= cos
π
3

=
1
2
,

and

cos
π
6

= sin
(π
2
−
π
6

)

= sin
π
3

=

√
3
2

,

for instance.
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397 Example Prove that
sinx= cos

(

x−
π
2

)

, ∀x ∈ R.

Solution: " Since the cosine is an even function,

sinx= cos
(π
2
− x

)

= cos
(

−
(π
2
− x

))

= cos
(

x−
π
2

)

.

#

398 Example Prove that the following hold identically.

cosx= sin
(

x+
π
2

)

, ∀x ∈ R.

−sinx= cos
(

x+
π
2

)

, ∀x ∈R.

Solution: " Using the fact the fact that the cosine is an even function, and using the complementary angle
identity for the cosine,

cosx= cos(−x) = sin
(π
2
− (−x)

)

= sin
(π
2

+ x
)

.

Since the sine is an odd function,

sinx=−sin(−x) =−cos
(π
2
− (−x)

)

=−cos
(π
2

+ x
)

.

#

399 Example Let 0< θ < π
2 . Given that sin2θ = cos3θ find sin5θ .

Solution: " Since sin2θ = cos3θ , these two quantities have the same sign. Since 0< 2θ < π , then both
C (2θ ) and C (3θ ) must be in quadrant I. By the complementary angle identities, we have
sin2θ = cos(π2 −2θ ). Thus cos(π2 −2θ ) = cos3θ , and so, π2 −2θ = 3θ or 5θ = π

2 . Hence sin5θ = 1. #

400 Example Write in the form asinα+bsinα:

sin(π−α)+ cos
(π
2

+α
)

− cos(π+α)

Solution: " By reflexion about the origin, sin(π−α) =−sin(−α). Since the sine is an odd function,
−sin(−α) =−(−sinα) = sinα . By the complementary angle identities, and since the sine is an odd function

cos
(π
2

+α
)

= cos
(π
2
− (−α)

)

= sin(−α) =−sinα.

Finally, by reflexion about the origin, cos(π+α) =−cosα . Upon collecting all of these equalities,

sin(π−α)+ cos
(π
2

+α
)

− cos(π+α) = cosα.

#

401 Example Given that
3sinx+4cosx= 5,

find sinx and cosx.
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Solution: " We have
3sinx+4cosx= 5⇐⇒ sinx=

5−4cosx
3

.

Putting this in the identity cos2 x+ sin2 x= 1 we obtain

cos2 x+

(
5−4cosx

3

)2
= 1

cos2 x+
25−40cosx+16cos2 x

9
= 1

9cos2 x+25−40cosx+16cos2 x= 9

25cos2 x−40cosx+16= 0

(5cosx−4)2 = 0

cosx=
4
5

Substituting this value we obtain

sinx=
5−4cosx

3
=
5− 16

5
3

=
3
5
.

#

402 Example Find k such that the expression

(sinx+ cosx)2+ k sinxcosx= 1

becomes an identity.

Solution: " We have

1 = (sinx+ cosx)2+ k sinxcosx

= sin2 x+2sinxcosx+ cos2 x+ k sinxcosx

= 1+(k+2)sinxcosx

We thus have (k+2)sinxcosx= 0. This will hold for all real numbers x if k=−2. #

Homework
9.2.1 Problem Write in the form asinx+bcosx, with real constants a,b.

A(x) = sin
(π
2
− x

)

+ cos(5π− x)+ cos
(
3π
2
− x

)

+ sin
(
3π
2

+ x
)

9.2.2 Problem True or False.

1. sin 7π6 = 1/2.

2. cos(π2 +99) = sin99.

3. cos(−1993) = cos1993.

4. sin(−1993) =−sin1993.

5. If sinx= 1, then x= π/2.

6. cos(cosπ) = cos(cos0).

7. ∀x ∈R, sin2x= 2sinx.

8. ∃x ∈R such that cosx= 2.

9. ∃x ∈R such that cos2 x= cosx2

10. (sinx+ cosx)2 = 1, ∀x ∈R.

11. cosx= sin(x+ π
2 ), ∀x ∈R.

12. sinx= cos(x− π
2 ), ∀x ∈R.
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13. sinx= cos(x+ π
2 ), ∀x ∈R.

14. − 12 ≤ cos
x
2 ≤

1
2 , ∀x ∈R.

15. 1≤−2cos x2 +3≤ 5, ∀x ∈ R.

16. ∃A ∈ R such that the equation cosx= A has exactly 7
real solutions.

17. cos2 x− sin2 x=−1,∀x ∈ R.

9.2.3 Problem Given that sint =−0.8 and C (t) lies in the fourth
quadrant, find cos t.

9.2.4 Problem Given that cosu=−0.9 and C (u) lies in the
second quadrant, find sinu.

9.2.5 Problem Given that sint =
√
7
5 and C (t) lies in the first

quadrant, find cos t.

9.2.6 Problem Given that cosu=
√
13
4 and C (u) lies in the third

quadrant, find sinu.

9.2.7 Problem Using the fact that 5π6 = π− π
6 , find cos

5π
6 and

sin 5π6 .

9.2.8 Problem Using the fact that 3π4 = π− π
4 , find cos

3π
4 and

sin 3π4 .

9.2.9 Problem Find sin(
31π
6

) and cos(
31π
6

).

9.2.10 Problem Find sin(
20π
3

) and cos(
20π
3

).

9.2.11 Problem Find sin(
17π
4

) and cos(
17π
4

).

9.2.12 Problem Find sin(
−15π
4

) and cos(−
15π
4

).

9.2.13 Problem Find sin(
202π
3

) and cos(
202π
3

).

9.2.14 Problem Find sin(
171π
4

) and cos(
171π
4

).

9.2.15 Problem If |sinθ | < 1 and |cosθ | > 0, prove that

cosθ
1− sinθ

+
cosθ
1+ sinθ

=
2

cosθ
holds identically.

9.2.16 Problem Given that

cos
2π
5

=

√
5−1
4

,

find sin 2π5 , cos
3π
5 and sin

3π
5

9.2.17 Problem Given that cosα+ sinα = A and sinα cosα = B,
prove that A2−2B= 1

9.2.18 Problem Given that cosα+ sinα = A and sinα cosα = B,
prove that sin3α+cos3α = A−AB.

9.2.19 Problem Demonstrate that for all real numbers x, the
following is an identity

(sinx+4cosx)2+(4sinx−cosx)2 = 17

9.2.20 Problem Prove that cos4 x− sin4 x= cos2 x− sin2 x is an
identity.

9.2.21 Problem Prove that
√
1+2sinxcosx= |sinx+cosx|, ∀x ∈ R.

9.2.22 Problem Prove that ∀x ∈R,

sin4 x+cos4 x+2(sinxcosx)2 = 1.

9.2.23 Problem Prove, by recurrence, that

sin(x+nπ) = (−1)n sinx,

and
cos(x+nπ) = (−1)n cosx.

9.2.24 Problem Prove that ∀x ∈R,

sin6 x+cos6 x+3(sinxcosx)2 = 1.

9.2.25 Problem Prove that

sinx−cosx+1
sinx+cosx−1

=
sinx+1
cosx

∀x ∈R such that sinx+cosx '= 1 and cosx '= 0.

9.2.26 Problem (AHSME 1976) If sinx+cosx= 1
5 and x ∈]0;π[,

find cosx and sinx.

9.2.27 Problem (AIME 1983) Find the minimum value of the
function

x "→
9x2 sin2 x+4

x sinx
over the interval ]0;π[.
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9.3 The Graphs of Sine and Cosine
To obtain the graph of x "→ sinx, we traverse the circumference of the unit circle, starting from (1,0), in a levogyrate
(counterclockwise) sense, recording each time the abscissa of the point visited. See figure 9.13.

π 2π

Figure 9.13: The graph y= sinx for x ∈ [0;2π [.

Since x "→ sinx is periodic with period 2π and an odd function, we may now graph x "→ sinx for all values of x. See figure
9.14.

1

-1

π
2 π 3π

2 2π 5π
2

−π
2−π−3π

2−2π−5π
2

Figure 9.14: The graph of x "→ sinx.

403 Example (Jordan’s Inequality) Give a graphical argument justifying the inequality 2
π x≤ sinx for 0≤ x≤

π
2 .

Solution: " The equation of the straight line joining (0,0) and (π2 ,1) is y= 2
π x. From the graphs below, the

graph of y= 2
π x lies below that of y= sinx in the interval [0; π2 ]. See figure 9.15. #

1

0π π
2 π

Figure 9.15: Jordan’s Inequality.

1

-1

-2

π
2 π−π

2−π

Figure 9.16: The graph of x "→ 2sinx.

404 Example Graph x "→ 2sinx.

Solution: " Recall that if y= f (x), then y= 2 f (x) is a distortion of the graph of y= f (x), in which the
y-coordinate is doubled. The graph of x "→ 2sinx is shewn in figure 9.16. Observe that −2≤ 2sinx≤ 2, so the
least value that x "→ 2sinx could attain is −2 and the largest value is 2. #
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405 Definition The average between the least value and largest value of of a periodic function its amplitude.

406 Theorem Let A ∈ R\{0}. Then
R → [−1;1]

x "→ sinAx
and

R → [−1;1]

x "→ cosAx
have period

2π
|A|
.

Proof: Since x "→ sinx and x "→ cosx have period 2π , then, if A ∈ R\{0} is constant, we have

sinA
(

x+
2π
|A|

)

= sin(Ax±2π) = sinAx,

and

cosA
(

x+
2π
|A|

)

= cos(Ax±2π) = cosAx,

whence x "→ sinAx and x "→ cosAx have period at most 2π|A| .

Could the period of x "→ sinAx,A '= 0 and x "→ cosAx,A '= 0 be smaller than
2π
|A|

? Assume 0< P<
2π
|A|

is a

period for these functions. Then 0< P|A| < 2π and sinAx= sinA(x±P) and cosAx= cosA(x±P). In
particular,

0= sin0= sin±AP.

This means that |A|P is a zero of x "→ sinx. Since 0< |A|P< 2π , we must have |A|P= π . Now

1= cos0= cos±AP= cos |A|P= cosπ =−1,

a contradiction. Thus the period of x "→ sinAx,A '= 0 and x "→ cosAx,A '= 0 is precisely
2π
|A|

, as we wanted to

shew. ❑

407 Example Graph x "→ sin2x.

Solution: " Since−1≤ sin2x≤ 1, the amplitude of x "→ sin2x is 1−(−1)
2 = 1. The period of x "→ sin2x is

2π÷2= π . Recall that if y= f (2x), then y= f (2x) is a distortion of the graph of y= f (x), in which the
x-coordinate is halved. The graph of x "→ sin2x is shewn in figure 9.17.

#

1

-1

-2

π
2 π−π

2−π

Figure 9.17: The graph of x "→ sin2x.

1

-1

-2

π
2 π−π

2−π

Figure 9.18: The graph of x "→ cosx.

408 Example Graph x "→ sin
(

x+
π
2

)
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Solution: " Recall that if a> 0 the graph of x "→ f (x+a) is a translation a units to the left of the graph
x "→ f (x). Now, the cosine is an even function, and by the complementary angle identities, we have

cosx= cos(−x) = sin
(π
2
− (−x)

)

= sin
(π
2

+ x
)

,

and so this graph is the same as that of the cosine function. The graph of y= sin(x+ π
2 ) = cosx is shewn in in

figure 9.18. #

409 Example Give a purely graphical argument (no calculators allowed!) justifying cos1< sin1.

Solution: " At x= π
4 , the graphs of the sine and the cosine coincide. For x ∈ [π4 ;

π
2 ], the values of the sine

increase from
√
2
2 to 1, whereas the values of the cosine decrease from

√
2
2 to 0. Since π

4 < 1< π
2 , we have

cos1< sin1. #

410 Example Graph x "→ −2cos x
2

+3

Solution: " Since−1≤ cos x2 ≤ 1, we have 1≤−2cos
x
2 +3≤ 5. The amplitude of x "→ −2cos x2 +3 is

therefore 5−12 = 2. The period of x "→ −2cos
x
2

+3 is
2π
1
2

= 4π. The graph is shewn in figure 9.19. #

411 Example Draw the graph of x "→ −3sin x4 . What is the amplitude, period, and where is the first positive real zero of this
function?

Solution: " Since−3≤−3sinx≤ 3, the amplitude of x "→ −3sin x4 is
3−(−3)
2 = 3. The period is 2π÷ 1

4 = 8π ,
and the first positive zero occurs when x

4 = π , i.e., at x= 4π . A portion of the graph is shewn in figure 9.20. #

1

2

3

4

5

-1

-2

-3

-4

-5

1 2 3 4 5 6 7 8-1-2-3-4-5-6-7-8

Figure 9.19: The graph of x "→ −2cos x2 +3.

1

2

3

4

5

-1

-2

-3

-4

-5

1 2 3 4 5 6 7 8-1-2-3-4-5-6-7-8

Figure 9.20: The graph of x "→ −3sin x4 .

412 Example For which real numbers x is logcosx x a real number?

Solution: " If loga t is defined and real, then a> 0,a '= 1 and t > 0. Hence one must have cosx> 0,cosx '= 1
and x> 0. All this happens when

x ∈ ]0;
π
2

[ ∪ ]
3π
2

+2πn;2π(n+1) [ ∪ ]2π(n+1);
5π
2

+2πn [ ,

for n≥ 0,n ∈ Z. #

413 Example For which real numbers x is logx cosx a real number?

Solution: " In this case one must have x> 0,x '= 1 and cosx> 0. Hence
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x ∈ ]0;1 [ ∪ ]1;
π
2

[ ∪ ]
3π
2

+2πn;
5π
2

+2πn [ ,

for n≥ 0,n ∈ Z.
#

414 Example Find the period of x "→ sin2x+ cos3x.

Solution: " Let P be the period of x "→ sin2x+ cos3x. The period of x "→ sin2x is π and the period of
x "→ cos3x is 2π3 . In one full period of length P, both x "→ sin2x and x "→ cos3x must go through an integral
number of periods. Thus P= sπ = 2πt

3 , for some positive integers s and t. But then 3s= 2t. The smallest positive
solutions of this is s= 2,t = 3. The period sought is then P= sπ = 2π . #

415 Example How many real numbers x satisfy
sinx=

x
100

?

Solution: " Plainly x= 0 is a solution. Also, if x> 0 is a solution, so is −x< 0. So, we can restrict ourselves
to positive solutions.

If x is a solution then |x| = 100|sinx|≤ 100. So one can further restrict x to the interval ]0;100]. Decompose
]0;100] into 2π-long intervals (the last interval is shorter):

]0;100] =]0;2π ]∪]2π ;4π ]∪]4π ;6π ]∪ · · ·∪]28π ;30π ]∪]30π ;100].

From the graphs of y= sinx,y= x/100 we see that that the interval ]0;2π ] contains only one solution. Each
interval of the form ]2πk; 2(k+1)π ],k= 1,2, . . . ,14 contains two solutions. As 31π < 100, the interval
]30π ;100] contains a full wave, hence it contains two solutions. Consequently, there are 1+2 ·14+2= 31
positive solutions, and hence, 31 negative solutions. Therefore, there is a total of 31+31+1= 63 solutions. #

Homework

9.3.1 Problem True or False. Use graphical arguments for the
numerical premises. No calculators!

1. x "→ cos3x has period 3.
2. cos3> sin1.
3. The first real zero of x "→ 2sinx+8 occurs at x= π

4. There is a real number x for which the graph of
x "→ 8+cos x

10 touches the x-axis.

9.3.2 Problem Graph portions of the following. Find the
amplitude, period, and the location of the first positive real zero, if
there is one, of each function.

1. x "→ 3sinx

2. x "→ sin3x

3. x "→ sin(−3x)

4. x "→ 3sin3x

5. x "→ 3cosx

6. x "→ cos3x

7. x "→ 1
3 cosx

8. x "→ cos 13x

9. x "→ −2cos 13x+13

10. x "→ 1
4 cos

1
3x−10

11. x "→ |sinx|

12. x "→ sin |x|

9.3.3 Problem Find the period of x "→ sin3x+cos5x

9.3.4 Problem Find the period of x "→ sinx+cos5x

9.3.5 Problem How many real solutions are there to

sinx= loge x ?

9.3.6 Problem Let x≥ 0. Justify graphically that

sinx≤ x.

Your argument must make no appeal to graphing software.

9.3.7 Problem Let x ∈R. Justify graphically that

1−
x2

2
≤ cosx.

Your argument must make no appeal to graphing software.
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9.4 Inversion

Since
R → [−1;1]

x "→ sinx
is periodic, it is not injective, and hence it does not have an inverse. We can, however, restrict the

domain and in this way obtain an inverse of sorts. The choice of the restriction of the domain is arbitrary, but the interval
[

− π
2 ;

π
2
]

is customarily used.

1

-1

π
2

−π
2

Figure 9.21: y= Sin x

1-1

π
2

− π
2

Figure 9.22: y= arcsinx

416 Definition The Principal Sine Function,
[−
π
2
;
π
2

] → [−1;+1]

x "→ Sin x
is the restriction of the function x "→ sinx to the

interval [−
π
2
;
π
2

]. With such restriction

[−
π
2
;
π
2

] → [−1;+1]

x "→ Sin x

is bijective with inverse

[−1;+1] → [−
π
2
;
π
2

]

x "→ arcsinx

The graph of
[−1;+1] → [−

π
2
;
π
2

]

x "→ arcsinx
is thus symmetric with the graph of

[−
π
2
;
π
2

] → [−1;+1]

x "→ Sin x
with respect to the

line y= x. See figures 9.21 and 9.22 for the graph of y= arcsinx. The notation sin−1 is often used to represent arcsin. The
function x "→ arcsinx is an odd function, that is,

arcsin(−x) =−arcsinx, ∀x ∈ [−1;1].

Also, [− π
2 ;

π
2 ] is the smallest interval containing 0 where all the values of x "→ Sin x in the interval [−1;1] are attained.

Moreover, ∀(x,y) ∈ [−1;1]× [− π
2 ;

π
2 ], y= arcsinx⇐⇒ x= siny.

!
1. Whilst it is true that sinarcsinx= x,∀x ∈ [−1;1], the relation arcsinsinx= x is not always true. For

example, arcsinsin 7π6 = arcsin(− 12) =− π
6 '=

7π
6 .
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2.
R → R

x "→ (arcsin◦sin)(x)
is a 2π-periodic odd function with

(arcsin◦sin)(x) =










x if x ∈
[

0; π2
]

π− x if x ∈
[π
2 ;π

]

.

The graph of x "→ (arcsin◦sin)(x) is shewn in figure 9.23.

1 2 3 4 5 6-1-2-3-4-5-6-7

π
2

− π
2

Figure 9.23: y= (arcsin◦sin)(x)

—
π
2

—

− π
2

—
π

y= A

arcsin
A

π
−
arcsin

A

— —

Figure 9.24: The equation sinx= A

417 Theorem The equation
sinx= A

has (i) no real solutions if |A| > 1, (ii) the infinity of solutions

x= (−1)n arcsinA+nπ , n ∈ Z,

if |A|≤ 1.

Proof: Since−1≤ sinx≤ 1 for x ∈R, the first assertion is clear.

Now, let |A|≤ 1. In figure 9.24 (where we have chosen 0≤ A≤ 1, the argument for −1≤ A< 0 being similar),
the first two positive intersections of y= A with y= sinx occur at x= arcsinA and x= π− arcsinA. Since the
sine function is periodic with period 2π , this means that

x= arcsinA+2πn, n ∈ Z

and
x= π− arcsinA+2πn=−arcsinA+(2n+1)π , n ∈ Z

are the real solutions of this equation. Both relations can be summarised by writing

x= (−1)n arcsinA+nπ , n ∈ Z.

This proves the theorem. ❑

418 Example Find all real solutions to sinx=− 12 , and then find all solutions in the interval [12π ;
27π
2 ].



Inversion 167

Solution: " The general solution to sinx=− 12 is given by

x = (−1)n arcsin
(

− 12
)

+nπ

= (−1)n
(

− π
6
)

+nπ

= (−1)n+1 π6 +nπ

Now, if

12π ≤ (−1)n+1
π
6

+nπ ≤
27π
2

then
12− (−1)n+1

1
6
≤ n≤

27
2
− (−1)n+1

1
6
.

The smallest 12− (−1)n+1 16 can be is 12−
1
6 = 71

6 > 11. The largest 272 − (−1)n+1 16 can be is
27
2 + 1

6 = 41
3 < 14.

So possibly,
11< n< 14,

which means that n= 12 or n= 13.
Testing n= 12, x=− π

6 +12π = 71π
6 , which falls outside the interval and x= π

6 +13π = 79π
6 , which falls in the

interval. So the only solution in the interval [12π ; 27π2 ] is 79π6 . #

419 Example Find the set of all solutions of

sin
π
x2

=
1
2
.

Are there any solutions in the interval ]1;3[ ?

Solution: " We have
π
x2

= (−1)n arcsin
1
2

+nπ = (−1)n
π
6

+nπ

1
x2

= (−1)n
1
6

+n

x2 =
1

(−1)n 16 +n

x2 =
6

(−1)n+6n
.

The expression on the right is negative for integers n≤−1. Therefore

x= ±

√

6
(−1)n+6n

,n= 0,1,2,3, . . . .

The set of all solutions is thus
{

−

√

6
(−1)n+6n

,

√

6
(−1)n+6n

n= 0,1,2,3, . . .

}

.

If

1<

√

6
(−1)n+6n

< 3,

then
1<

6
(−1)n+6n

< 9,



168 Chapter 9

1
6

<
1

(−1)n+6n
<
3
2
,

2
3

< 6n+(−1)n < 6,

2
3
− (−1)n < 6n< 6− (−1)n.

The smallest 23 − (−1)n can be is − 13 and the largest 6− (−1)n can be is 7. Hence we must test n such that

− 13 < 6n< 7, that is, n= 0 and n= 1. If n= 0, then x=
√
6 ∈]1;3[. If n= 1, then x=

√

6
5 ∈]1;3[. So the

solutions belonging to ]1;3[ are x=
√
6 and x=

√

6
5 . #

420 Example Find the set of all real solutions to

sin
2

2x+1
=

√
2
2

Solution: " We have
2

2x+1
= (−1)n arcsin

(√
2
2

)

+πn,n∈ Z,

which is equivalent to each of the following equations

2
2x+1

= (−1)n
π
4

+πn,

2x+1
2

=
1

(−1)n π4 +πn
,

x+
1
2

=
1

(−1)n π4 +πn
,

whence the solution set is
{

−
1
2

+
4

(−1)nπ+4nπ
, n ∈ Z

}

.

#

421 Example Find the set of all real solutions to

2sin2 x− sinx−1= 0.

Solution: " Factoring,
0= 2sin2 x− sinx−1= (2sinx+1)(sinx−1)

Hence either sinx=− 12 and so

x= (−1)n arcsin
1
2

+πn= (−1)n(
−π
6

)+πn= (−1)n+1
π
6

+πn,

or sinx= 1 and so
x= (−1)n arcsin1+πn= (−1)n

π
2

+πn.

The solution set is therefore
{

(−1)n+1
π
6

+πn, (−1)n
π
2

+πn,n∈ Z
}

.

#
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422 Definition The Principal Cosine Function,
[0;π ] → [−1;1]

x "→ Cos x
is the restriction of the function x "→ cosx to the

interval [0;π ]. With such restriction

[0;π ] → [−1;1]

x "→ Cos x

is bijective with inverse

[−1;1] → [0;π ]

x "→ arccosx
.

!
1. The notation cos−1 is often used to represent arccos.
2. Whilst it is true that cosarccosx= x,∀x ∈ [−1;1], the relation arccoscosx= x is not always true. For

example, arccoscos 7π6 = arccos(−
√
3
2 ) = 5π

6 '=
7π
6 .

3. x "→ arccosx is neither an even nor an odd even function.

4.
R → R

x "→ (arccos◦cos)(x)
is a 2π-periodic even function with

(arccos◦cos)(x) =











x if x ∈ [0;π ]

−x if x ∈ [−π ;0].

5. ∀(x,y) ∈ [−1;1]× [0;π ], y= arccosx⇐⇒ x= cosy.
6. The graphs of x "→ Cos x and x "→ arccosx are symmetric with respect to the line y= x.

The graph of x "→ arccosx is shewn in figure 9.25.

For convenience, we provide the following table.

x arcsinx arccosx x arcsinx arccosx

0 0 π
2

1 π
2 0 −1 − π

2 π

1
2

π
6

π
3 − 12 − π

6
2π
3

√
2
2

π
4

π
4 −

√
2
2 − π

4
3π
4

√
3
2

π
3

π
6 −

√
3
2 − π

3
5π
6

423 Theorem The equation
cosx= A
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has (i) no real solutions if |A| > 1, (ii) the infinity of solutions

x= ±arccosA+2nπ , n ∈ Z,

if |A|≤ 1.

Proof: Since−1≤ cosx≤ 1 for x ∈R, the first assertion is clear. Now, let |A|≤ 1. In figure 9.26 (where we

have chosen 0≤ A≤ 1, the argument for −1≤ A< 0 being similar), the two intersections of y= A with
y= cosx closest to x= 0 occur at x= arccosA and x=−arccosA. Since the cosine function is periodic with

period 2π , this means that
x= arccosA+2πn, n ∈ Z

and
x=−arccosA+2πn, n ∈ Z

are the real solutions of this equation. Both relations can be summarised by writing

x= ±arccosA+2nπ , n ∈ Z.

This proves the theorem. ❑

- π

—
+1+1-1

—

π
2-

solid y= arccosx

dashed y= cosx

Figure 9.25: y= arccosx

—

π
2

—

− π
2

y= A

arccosA

−
arccosA

——

Figure 9.26: The equation cosx= A

424 Example Find the set of all real solutions to

2sin2 x+3cosx−3= 0.

Solution: " Since the equation has a cosine to the first power, we write the equation in terms of cosine only,
obtaining

0 = 2sin2 x+3cosx−3

= 2(1− cos2 x)+3cosx−3

= 2cos2 x−3cosx+1

= (2cosx−1)(cosx−1)

Thus either cosx= 1
2 , in which case

x= ±arccos
1
2

+2πn= ±
π
3

+2πn
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or cosx= 1 in which case
x= ±arccos1+2πn= 2πn.

The solution set is {

±
π
3

+2πn,2πn, n ∈ Z
}

.

#

425 Example Find the solutions of the equation

log√2sinx(1+ cosx) = 2

in the interval [0;2π ].

Solution: " If the logarithmic expression is to make sense, then
√
2sinx> 0,

√
2sinx '= 1 and 1+ cosx> 0.

For this we must have
x ∈

]

0;
π
4

[

∪
]
π
4
;
3π
4

[

∪
]
3π
4
;π
[

.

Now, if x belongs to this set

log√2sinx(1+ cosx) = 2⇐⇒ 2sin2 x= 1+ cosx.

Using sin2 x= 1− cos2 x, the last equality occurs if and only if

(2cosx−1)(cosx+1) = 0.

If cosx+1= 0, then x= π , a value that must be discarded (why?). If cosx= 1
2 , then x= π

3 , which is the only
solution in [0;2π ] #

.

426 Example Find the set of all the real solutions to

2sin
2 x+5(2cos

2 x) = 7

Solution: " Observe that

2sin
2 x+5(2cos

2 x)−7 = 2sin
2 x+5(21−sin

2 x)−7

= 2sin
2 x+5(21 ·2− sin

2 x)−7

= 2sin
2 x+

(
10
2sin2 x

)

−7

= u+
10
u
−7.

with u= 2sin2 x. From this, 0= u2−7u+10= (u−5)(u−2). Thus either u= 2,, meaning 2sin2 x = 2 which is to
say sinx= ±1 or x= (−1)n(±π2 )+nπ . When 2sin2 x = 5 one sees that sin2 x= log2 5. Since the sinistral side of
the last equality is at most 1 and its dextral side is greater than 1, there are no real roots in this instance. The
solution set is thus {

(−1)n(
±π
2

)+nπ , n ∈ Z
}

.

#

427 Example Find all the real solutions of the equation

cos2000 x− sin2000 x= 1.
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Solution: " Transposing
cos2000 x= sin2000 x+1.

The dextral side is ≥ 1 and the sinistral side is ≤ 1. Thus equality is only possible if both sides are equal to 1,
which entails that cosx= 1 or cosx=−1, whence x= πn,n ∈ Z. #

428 Example Find all the real solutions of the equation

cos2001 x− sin2001 x= 1.

Solution: " Since |cosx|≤ 1 and |sinx|≤ 1, we have

1 = cos2001 x− sin2001 x

= cos2001(−x)+ sin2001(−x)

≤ |cos2001(−x)|+ |sin2001(−x)|

= |cos1999(−x)|cos2(−x)+ |sin1999(−x)|sin2(−x)

≤ cos2(−x)+ sin2(−x)

= 1.

The inequalities are tight, and so equality holds throughout. The first inequality above is true if and only if
cos(−x)≥ 0 and sin(−x)≥ 0. The second inequality is true if and only if |cos(−x)| = 1 or |sin(−x)| = 1.
Hence we must have either cos(−x) = 1 or sin(−x) = 1.This means x= 2nπ or x=− π

2 +2nπ where n ∈ Z. #

429 Example What is sinarccos 34?

Solution: " Put t = arccos 34 . Then
3
4 = cost with t ∈ [0; π2 ]. In the interval [0;

π
2 ], sin t is positive. Hence

sin t =
√

1− cos2 y=

√

1−
(
3
4

)2
=

√
7
4

.

#

430 Example What is sinarccos(− 37)?

Solution: " Put t = arccos(− 37 ). Then −
3
7 = cost with y ∈ [π2 ;π ]. In the interval [π2 ;π ], sin t is positive. Hence

sin t =
√

1− cos2 t =

√

1−
(

−
3
7

)2
=
2
√
10
7

.

#

431 Example Let x ∈]− 1
5 ;0[. Express sinarccos5x as a function of x.

Solution: " First notice that 5x ∈]−1;0[, which means that arccos5x ∈]π2 ;π [, an interval where the sine is
positive. Put t = arccos5x. Then 5x= cost. Finally,

sin t =
√

1− cos2 t =
√

1−25x2.

#
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432 Example Prove that
arcsinx+ arccosx=

π
2

,∀x ∈ [−1;1].

Solution: " By the complementary angle identity for the cosine,

cos
(π
2
− arcsinx

)

= sin(arcsinx) = x.

Since − π
2 ≤ arcsinx≤

π
2 , we have

π
2 − arcsinx ∈ [0;π ]. This means that

cos
(π
2
− arcsinx

)

= x⇐⇒
π
2
− arcsinx= arccosx,

whence the desired result follows. #

Homework

9.4.1 Problem True or False.
1. arcsin π2 = 1.

2. If arccosx=− 12 , then x=− π
3 .

3. If arcsinx≥ 0 then x ∈ [0; π2 ].
4. arccos cos(− π

3 ) = π
3 .

5. arccos cos(− π
6 ) =− π

6 .

6. arcsin 1
2000 +arccos 1

2000 = π
2 .

7. ∃x ∈ R such that arcsinx> 1.
8. −1≤ arccosx≤ 1, ∀x ∈R.
9. sinarcsinx= x, ∀x ∈ R.
10. arccos(cosx) = x, ∀x ∈ [0;π].

9.4.2 Problem Find all the real solutions to 2sinx+1= 0 in the
interval [−π;π].

9.4.3 Problem Find the set of all real solutions to

sin
(

3x−
π
4

)

= 0.

9.4.4 Problem Find the set of all real solutions of the equation

−2sin2 x−cosx+1= 0.

9.4.5 Problem Find all the real solutions to sin3x =−1. Find all
the solutions belonging to the interval [98π;100π].

9.4.6 Problem Find the set of all real solutions to

5cos2 x−2cosx−7= 0.

9.4.7 Problem Find the set of all real solutions to

sinxcosx= 0.

9.4.8 Problem Find the set of all real solutions to

cos3x =
4
3
.

9.4.9 Problem Find the set of all real solutions to

4sin2 2x−3= 0.

9.4.10 Problem Find all real solutions belonging to the interval
[−2;2], if any, to the following equations.

1. 4sin2 x−3 = 0
2. 2sin2 x= 1
3. cos 2x3 =−

√
3
2

4. sin 3x = 1

5.
1+ sinx
1−cosx

= 0

9.4.11 Problem Find sinarccos 13 .

9.4.12 Problem Find cosarcsin(− 23 ).

9.4.13 Problem Find sinarccos(− 23 ).

9.4.14 Problem Find arcsin(sin5); arccos(cos10)

9.4.15 Problem Find all the real solutions of the following
equations.

1. cosx+
1
cosx

= 3
2 .

2. 2cos3 x+cos2 x−2cosx−1= 0.
3. 6cos2

(

5x−
π
3

)

−cos
(

5x−
π
3

)

= 2.

4. 4cos2 x−2(
√
2+1)cosx+

√
2= 0.

5. 4cos4 x−17cos2 x+4= 0.
6. (2cosx+1)2−4cos2 x+(sinx)(2cosx+1)+1 = 0.
7. 4sin2 x−2(

√
3−
√
2)sinx=

√
6.

8. −2sin2 x+19|sinx|+10 = 0.

9.4.16 Problem Demonstrate that

arccos x+arccos(−x) = π, ∀x ∈ [−1;1],

arcsinx=−arcsin(−x), ∀x ∈ [−1;1].
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9.4.17 Problem Shew that

arcsinx= arccos
√

1−x2, ∀x ∈ [0;1],

arccosx= arcsin
√

1−x2, ∀x ∈ [0;1].

9.4.18 Problem Let 0< x< 1
3 . Find cos arcsin3x and

cos arccos3x as functions of x.

9.4.19 Problem Let − 12 < x< 0. Find sin arcsin2x and
sin arccos2x as functions of x.

9.4.20 Problem Find real constants a,b such that

(arcsin◦sin)(x) = ax+b, ∀x ∈ [
99π
2
;
101π
2

].

9.4.21 Problem Prove that
R → R

x "→ (arccos◦cos)(x)
is a

2π-periodic even function and graph a portion of this function for
x ∈ [−2π;2π].

9.5 The Goniometric Functions
We define the tangent, secant, cosecant and cotangent of x ∈R as follows.

tanx=
sinx
cosx

, x '=
π
2

+πn, n ∈ Z, (9.16)

secx=
1
cosx

, x '=
π
2

+πn, n ∈ Z, (9.17)

cscx=
1
sinx

, x '= πn, n ∈ Z, (9.18)

cotx=
1
tanx

=
cosx
sinx

, x '= πn, n ∈ Z. (9.19)

The circles below have all radius 1.

cosine sine

secant tangent

cosecant cotangent

!
1. The image of x "→ tanx over its domain R−{ π2 +πn, n ∈ Z} is R.

2. The image of x "→ cotx over its domain R−{πn, n ∈ Z} is R.

3. The image of x "→ secx over its domain R−{ π2 +πn, n ∈ Z} is ]−∞;−1]∪ [1;+∞[.
4. The image of x "→ cscx over its domain R−{πn, n ∈ Z} is ]−∞;−1]∪ [1;+∞[.
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433 Example Given that tanx=−3 and C (x) lies in the fourth quadrant, find sinx and cosx.

Solution: " In the fourth quadrant sinx< 0 and cosx> 0. Now, −3= tanx= sinx
cosx entails sinx=−3cosx. As

sin2 x+ cos2 x= 1, One gathers 9cos2 x+ cos2 x= 1 or cos2 x= 1
10 . Choosing the positive root, cosx=

√
10
10 .

Finally,

sinx=−3cosx=−
3
√
10
10

.

#

434 Example Given that cotx= 4 and C (x) lies in the third quadrant, find the values of tanx,sinx,cosx,cscx,secx.

Solution: " From cotx= 4, we have cosx= 4sinx. Using this and sin2 x+ cos2 x= 1, we gather
sin2 x+16sin2 x= 1, and since C (x) lies in the third quadrant, sinx=−

√
17
17 . Moreover,

cosx= 4sinx=− 4
√
17
17 . Finally, tanx= 1

cotx = 1
4 , cscx= 1

sinx =−
√
17 and secx= 1

cosx =−
√
17
4 . #

435 Theorem The function
R−{

π
2

+πn, n ∈ Z} → R

x "→ tanx
is an odd function.

Proof: If x '= π
2 +πn, n ∈ Z

tan(−x) =
sin(−x)
cos(−x)

=−
sinx
cosx

=− tanx,

which proves the assertion. ❑

436 Theorem The function
R−{

π
2

+πn, n ∈ Z} → R

x "→ tanx
is periodic with period π .

Proof: Since
tan(x+π) =

sin(x+π)

cos(x+π)
=
−sinx
−cosx

= tanx,

the period is at most π .
Assume now that 0< P< π is a period for x "→ tanx. Then tanx= tan(x+P) ∀x ∈ R and in particular,

0= tan0= tanP=
sinP
cosP

,

which entails that sinP= 0. But then P would be a positive zero of x "→ sinx smaller than π , a contradiction.
Hence the period of x "→ tanx is exactly π , which completes the proof. ❑

How to graph x "→ tanx? We start with x ∈ [0; π2 [ and then appeal to theorem 435 and theorem 436 to extend this construction
for all x ∈ R.

In figure 9.27, choose B such that the measure of arc AB (measured counterclockwise) be x. Point A= (1,0), and point
B= (sinx,cosx). Since points B and (1,t) are collinear, the gradient (slope) of the line joining (0,0) and B is the same as that
joining (0,0) and (1,t). Computing gradients, we have

sinx−0
cosx−0

=
t−0
1−0

,

whence t = tanx.We have thus produced a line segment measuring tanx. If we let x vary from 0 to π/2 we obtain the graph
of x "→ tanx for x ∈ [0; π2 [.
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Since cosx= 0 at x= π
2 (2n+1), n ∈ Z, x "→ tanx has poles at the points x= π

2 (2n+1), n ∈ Z. The graph of x "→ tanx is
shewn in figure 9.28.

A

(1,t)

O

B

−
π
2

π
2

Figure 9.27: Construction of the graph of x "→ tanx for x ∈ [0; π2 [.

−
π
2

π
2

3π
2

−
3π
2

Figure 9.28: y= tanx

−
π
2

−

−
π
2

Figure 9.29: y= arctanx

We now define the Principal Tangent function and the arctan function.

437 Definition The Principal Tangent Function, x "→ Tan x is the restriction of the function x "→ tanx to the interval
]−

π
2
;
π
2

[. With such restriction

]−
π
2
;
π
2

[ → R

x "→ Tan x

is bijective with inverse

R → ]−
π
2
;
π
2

[

x "→ arctanx
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The graph of x "→ arctanx is shewn in figure 9.29. Observe that the lines y= ± π
2 are asymptotes to x "→ arctanx.

!
1. ∀x ∈ R, tan(arctan(x)) = x.

2.
R− {

π
2

+nπ ,n∈ Z} → R

x "→ (arctan◦ tan)(x)
is an odd π-periodic function.

438 Theorem The equation
tanx= A, A ∈ R

has the infinitely many solutions
x= arctanA+nπ ,n∈ Z.

Proof: Since the graph of x "→ tanx is increasing in ]− π
2 ;

π
2 [, it intersects the graph of y= A at exactly one

point,
tanx= A=⇒ x= arctanA

if x ∈]− π
2 ;

π
2 [. Since x "→ tanx is periodic with period π , each of the points

x= arctanA+nπ ,n∈ Z

is also a solution. ❑

439 Example Solve the equation
tan2 x= 3

Solution: " Either tanx=
√
3 or tanx=−

√
3. This means that x= arctan

√
3+πn= π

3 +πn or
x= arctan(−

√
3)+πn=− π

3 +πn. We may condense this by writing x= ± π
3 +πn,n∈ Z. #

440 Example Solve the equation (tanx)sinx = (cotx)cosx.

Solution: " For the tangent and cotangent to be defined, we must have x '= nπ
2 ,n ∈ Z. Then

(tanx)sinx = (cotx)cosx =
1

(tanx)cosx

implies
(tanx)sinx+cosx = 1.

Thus either tanx= 1, in which case x= π
4 +nπ , n ∈ Z or sinx+ cosx= 0, which implies tanx=−1, but this

does not give real values for the expressions in the original equation. The solution is thus

x=
π
4

+nπ , n ∈ Z.

#

441 Example Find sinarctan 23 .

Solution: " Put t = arctan 23 . Then
2
3 = tant,t ∈]0; π2 [ and thus sin t > 0. We have 32 sin t = cost. As

1= cos2 t+ sin2 t =
9
4
sin2 t+ sin2 t,

we gather that sin2 t = 4
13 . Taking the positive square root sin t =

2
13 . #
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442 Example Find the exact value of tanarccos(− 15).

Solution: " Put t = arccos(− 15). As the arccosine of a negative number, t ∈ [π2 ,π ]. Now, cost =− 15 , and so

sin t =

√

1−
(

−
1
5

)2
=

√

24
25

=
2
√
6
5

.

We deduce that tan t = sint
cost =−2

√
6. #

443 Example Let x ∈ [0;1[. Prove that
arcsinx= arctan

x√
1− x2

.

Solution: " Since x ∈ [0;1[, arcsinx ∈ [0; π2 [. Put t = arcsinx, then sin t = x, and cost > 0 since t ∈ [0; π2 [. Now,
cost =

√

1− sin2 t =
√
1− x2, and

tan t =
sin t
cost

=
x√
1− x2

.

Since t ∈ [0; π2 [ this implies that

t = arctan
x√
1− x2

,

from where the desired equality follows. #

444 Theorem The following Pythagorean-like Relation holds.

tan2 x+1= sec2 x, ∀x ∈ R\{(2n+1)
π
2
, n ∈ Z}. (9.20)

Proof: This immediately follows from sin2 x+ cos2 x= 1 upon dividing through by cos2 x. ❑

445 Example Given that tanx+ cotx= a, write tan3 x+ cot3 x as a polynomial in a.

Solution: " Using the fact that tanxcotx= 1, and the Binomial Theorem:

(tanx+ cotx)3 = tan3 x+3tan2 xcotx+3tanxcot2 x+ cot3 x

= tan3 x+ sin3 x+3tanxcotx(tanx+ cotx)

= tan3 x+ sin3 x+3(tanx+ cotx)

It follows that
tan3 x+ cot3 x= (tanx+ cotx)3−3(tanx+ cotx) = a3−3a.

Aliter: Observe that a2 = (tanx+ cotx)2 = tan2 x+ cot2 x+2, hence tan2 x+ cot2 x= a2−2. Factorising the
sum of cubes

tan3 x+ cot3 x= (tanx+ cotx)(tan2 x−1+ cot2 x) = a(a2−1−2)

which equals a3−3a, as before. #

446 Example Prove that
2siny+3

2tany+3secy
= cosy,

whenever the expression on the sinistral side be defined.
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Solution: " Decomposing the tangent and the secant as cosines we obtain,

2siny+3
2tany+3secy

=
2siny+3
2 sinycosy + 3

cosy

=
2sinycosy+3cosy

2siny+3
=

(cosy)(2siny+3)
2siny+3

= cosy,

as we wished to shew. #

447 Example Prove the identity
tanA+ tanB
secA− secB

=
secA+ secB
tanA− tanB

,

whenever the expressions involved be defined.

Solution: " We have

tanA+ tanB
secA− secB

=

(
tanA+ tanB
secA− secB

)(
tanA− tanB
secA+ secB

)(
secA+ secB
tanA− tanB

)

=

(
tan2A− tan2B
sec2A− sec2B

)(
secA+ secB
tanA− tanB

)

=

(
(sec2A−1)− (sec2B−1)

sec2A− sec2B

)(
secA+ secB
tanA− tanB

)

=
secA+ secB
tanA− tanB

,

as we wished to shew. #

448 Example Given that sinA+ cscA= T , express sin4A+ csc4A as a polynomial in T .

Solution: " First observe that

T 2 = (sinA+ cscA)2 = sin2A+ csc2A+2sinAcscA,

hence
sin2A+ csc2A= T 2−2.

By the Binomial Theorem

T 4 = (sinA+ cscA)4

= sin4A+4sin3AcscA+6sin2Acsc2A+4sinAcsc3A+ csc4A

= sin4A+ csc4A+6+4(sin2A+ csc2A)

= sin4A+ csc4A+6+4(T2−2),

whence sin4A+ csc4A= T 4−4T +2. #

Homework
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9.5.1 Problem True or False.
1. tanx= cot 1x , ∀x ∈R\{0}.

2. ∃x ∈ R such that secx= 1
2 .

3. arctan1= arcsin1
arccos1 .

4. x "→ tan2x has period π .

9.5.2 Problem Given that cscx=−1.5 and C (x) lies on the fourth
quadrant, find sinx,cosx and tanx.

9.5.3 Problem Given that tanx= 2 and C (x) lies on the third
quadrant, find sinx and cosx.

9.5.4 Problem Given that sinx= t2 and C (x) lies in the second
quadrant, find cosx and tanx.

9.5.5 Problem Let x<−1. Find sinarcsec x as a function of x.

9.5.6 Problem Find cosarctan(− 13 ).

9.5.7 Problem Find arctan(tan(−6)), arccot (cot(−10)).

9.5.8 Problem Give a sensible definition of the Principal
Cotangent, Secant, and Cosecant functions, and their inverses.
Graph each of these functions.

9.5.9 Problem Solve the following equations.
1. sec2 x− secx−2= 0
2. tanx+cotx= 2
3. tan4x= 1
4. 2sec2 x+ tan2 x−3= 0
5. 2cosx− sinx= 0
6. tan(x+ π

3 ) = 1

7. 3cot2 x+5cscx+1= 0
8. 2sec2 x= 5tanx
9. tan2 x+ sec2 x= 17
10. 6cos2 x+ sinx−5 = 0

9.5.10 Problem Prove that

tanx= cot
(π
2
−x

)

,

cotx= tan
(π
2
−x

)

.

9.5.11 Problem Prove that if x ∈R then

arctanx+arccot
1
x

=
π
2
sgn(x),

where sgn(x) =−1 if x< 0, sgn(x) = 1 if x> 0, and sgn(0) = 0.

9.5.12 Problem Graph x "→ (arctan◦ tan)(x)

9.5.13 Problem Let x ∈]0;1[. Prove that

arcsinx= arccot
√
1−x2
x

.

9.5.14 Problem Let x ∈]0;1[. Prove that

arccosx= arctan
√
1−x2
x

= arccot
x√
1−x2

.

9.5.15 Problem Let x> 0. Prove that

arctanx= arcsin
x√
1+x2

= arccos
1√
1+x2

.

9.5.16 Problem Let x> 0. Prove that

arccot x= arcsin
1√
1+x2

= arccos
x√
1+x2

.

9.5.17 Problem Prove the following identities. Assume, whenever
necessary, that the given expressions are defined.

1.
sinx tanx= secx−cosx

2. tan3 x+1= (tanx+1)(sec2 x− tanx)

3. 1+ tan2 x=
1

2−2sinx
+

1
2+2sinx

4.
secα sinα
tanα+cotα

= sin2α

5.
1− sinα
cosα

=
cosα
1+ sinα

6. 7sec2 x−6tan2 x+9cos2 x=
(1+3cos2 x)2

cos2 x

7.
1− tan2 t
1+ tan2 t

= cos2 t− sin2 t

8.
1+ tanB+ secB
1+ tanB− secB

= (1+ secB)(1+cscB)

9.6 Addition Formulae
We will now derive the following formulæ.

cos(α±β ) = cosα cosβ ∓ sinα sinβ (9.21)

sin(α±β ) = sinα cosβ ± sinβ cosα (9.22)
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tan(α±β ) =
tanα± tanβ
1∓ tanα tanβ

(9.23)

A

B

b

a−b

a

Figure 9.30: Theorem 449.

A′

B′

a−b

Figure 9.31: Theorem 449.

We begin by proving

449 Theorem Let (a,b) ∈ R2. Then cos(a−b) = cosacosb+ sinasinb.

Proof: Consider the points A(cosb,sinb) and B(cosa,sina) in figure 9.30. Their distance is

√

(cosb− cosa)2+(sinb− sina)2 =
√

cos2 b−2cosbcosa+ cos2 a+ sin2 b−2sinbsina+ sin2 a

=
√

2−2(cosacosb+ sinasinb).

If we rotate A b radians clockwise to A′(1,0), and B b radians clockwise to B′(cos(a−b),sin(a−b)) as in figure
9.31, the distance is preserved, that is, the distance of A′ to B′, which is

√

(cos(a−b)−1)+ sin2(a−b) =
√

1−2cos(a−b)+ cos2(a−b)+ sin2(a−b) =
√

2−2cos(a−b),

then equals the distance of A to B. Therefore we have

√

2−2(cosacosb+ sinasinb) =
√

2−2cos(a−b) =⇒ 2−2(cosacosb+ sinasinb) = 2−2cos(a−b)

=⇒ cos(a−b) = cosacosb+ sinasinb.

❑

450 Corollary cos(a+b) = cosacosb− sinasinb.

Proof: This follows by replacing b by −b in Theorem 449, using the fact that x "→ cosx is an even function and
so cos(−b) = cosb, and that x "→ sinx is an odd function and so sin(−b) =−sinb:

cos(a+b) = cos(a− (−b)) = cosacos(−b)+ sinasin(−b) = cosacosb− sinasinb.

❑

451 Theorem Let (a,b) ∈ R2. Then sin(a±b) = sinacosb± sinbcosa.
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Proof: We use the fact that sinx= cos
(π
2
− x

)

and that cosx= sin
(π
2
− x

)

. Thus

sin(a+b) = cos
(π
2
− (a+b)

)

= cos
((π
2
−a

)

−b
)

= cos
(π
2
−a

)

cosb+ sin
(π
2
−a

)

sinb

= sinacosb+ cosasinb,

proving the addition formula. For the difference formula, we have

sin(a−b) = sin(a+(−b)) = sinacos(−b)+ sin(−b)cosa= sinacosb− sinbcosa.

❑

452 Theorem Let (a,b) ∈ R2. Then tan(a±b) =
tana± tanb
1∓ tana tanb

.

Proof: Using the formulæ derived above,

tan(a±b) =
sin(a±b)
cos(a±b)

=
sinacosb± sinbcosa
cosacosb∓ sinasinb

.

Dividing numerator and denominator by cosacosb we obtain the result. ❑

By letting a+b= A,a−b= B in the above results we obtain the following corollary.

453 Corollary

cosA+ cosB= 2cos
(
A+B
2

)

cos
(
A−B
2

)

(9.24)

cosA− cosB=−2sin
(
A+B
2

)

sin
(
A−B
2

)

(9.25)

sinA+ sinB= 2sin
(
A+B
2

)

cos
(
A−B
2

)

(9.26)

sinA− sinB= 2sin
(
A−B
2

)

cos
(
A+B
2

)

(9.27)

454 Example Given that cosa=−.1 and π < a< 3π
2 , and that sinb= .2 and 0< b< π

2 , find cos(a+b).

Solution: " Since C (a) is in the third quadrant, sina=−
√

1− (.1)2 =−
√
0.99. As C (b) is in the first

quadrant, cosb=
√

1− (.2)2 =
√
0.96. By the addition formula for the cosine

cos(a+b) = cosacosb− sinasinb

= (−.1)(
√
0.96)− (−

√
0.99)(.2)

= .2
√

.99− .1
√

.96.

#
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455 Example Write sin5xcosx as a sum of sines.

Solution: " We have
sin6x= sin(5x+ x) = sin5xcosx+ sinxcos5x

sin4x= sin(5x− x) = sin5xcosx− sinxcos5x

Adding both equalities and dividing by 2, we gather,

sin5xcosx=
1
2
sin6x+

1
2
sin4x.

#

456 Example Solve the equation
sin6x+ sin4x= 0.

Solution: " As sin6x+ sin4x= 2sin5xcosx we must have either sin5x= 0 or cosx= 0. Thus

x=
πn
5

, x= ±
π
2

+πn,n∈ Z.

#

457 Example Write sinxsin2x as a sum of cosines.

Solution: " We have
cos3x= cos(2x+ x) = cos2xcosx− sin2xsinx,

cosx= cos(2x− x) = cos2xcosx+ sin2xsinx.

Subtracting both equalities cos3x− cosx=−2sin2xsinx, whence

sin2xsinx=−
1
2
cos3x+

1
2
cosx.

#

458 Example Find the exact value of cos 7π12 .

Solution: " Observe that 712 = 1
3 + 1

4 . Using the addition formulæ

cos 7π12 = cos
(π
3 + π

4
)

= cos π3 cos
π
4 − sin

π
3 sin

π
4

= ( 12 )(
√
2
2 )− (

√
3
2 )(

√
2
2 )

=
√
2−
√
6

4

.

#

459 Example (i) Write
√
3cosx+ sinx in the form Acos(x−θ ), with − π

2 < θ < π
2 . (ii) Use the preceding identity in order

to solve the equation √
3cosx+ sinx=−1.

(iii) Find all the solutions in the interval [0;2π ].
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Solution: " First observe that A '= 0, since
√
3cosx+ sinx is not identically 0. We have

Acos(x−θ ) = Acosxcosθ +Asinxsinθ .

If the expression on the dextral side of the above equality is to be equal to
√
3cosx+ sinx then Acosθ =

√
3 and

Asinθ = 1. This entails that tanθ =
√
3
3 and so θ = π

6 . This in turn yields A= 2. Hence

√
3cosx+ sinx= 2cos

(

x−
π
6

)

.

Now, if 2cos
(

x− π
6
)

=−1, then

x−
π
6

= ±arccos(−
1
2
)+2nπ , n ∈ Z,

x=
π
6
±
2π
3

+2nπ , n ∈ Z,

which is the same family as x= 5π
6 +2nπ ,x=− π

2 +2nπ and the solutions in [0;2π ] are clearly x= 5π
6 and

x= 3π
2 .

Aliter: Write the equation as
√
3cosx+1=−sinx and square

3cos2 x+2
√
3cosx+1= sin2 x.

Using sin2 x= 1− cos2 x we obtain

3cos2 x+2
√
3cosx+1= 1− cos2 x,

or
(cosx)(4cosx+2

√
3) = 0.

This equation has solutions x= ± π
2 +2nπ and x= ± 5π

6 +2nπ . Testing x= π
2 in the original equation√

3cosx+ sinx=−1 we see that it is not a solution, hence the family x= π
2 +2nπ is not part of the solution set

of the original equation. The same happens when we test x=− 5π6 , so we must also discard this family. The two
remaining families, x= 5π

6 +2nπ , x=− π
2 +2nπ agree with our previous solution. #

460 Example Obtain a formula for cos(a+b+ c) in terms of cosines and sines of a,b, and c.

Solution: " Using the addition formula twice

cos(a+b+ c) = cosacos(b+ c)− sinasin(b+ c)

= cosa(cosbcosc− sinbsinc)−

−sina(sinbcosc+ sinccosb)

= cosacosbcosc− cosasinbsinc−

−sinasinbcosc− sinacosbsinc

#

461 Example (Canadian Mathematical Olympiad 1984) Given any 7 real numbers, prove that there are two of them, say,
x and y, such that

0≤
x− y
1+ xy

≤
1√
3
.
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Solution: " Let the numbers be ak,k= 1,2, . . . ,7. There exists bk such ak = tanbk, since

]−
π
2
;
π
2

[ → R

x "→ tanx
is a bijection. Divide the interval ]− π

2 ;
π
2 [ into six subintervals, each of length

π
6 . Since

we have 7 bk’s and 6 subintervals, two of the bk’s, say bs and bt , must lie in the same subinterval. Assuming
bs ≥ bt we then have 0≤ bs−bt ≤ π

6 . Since x "→ tanx is an increasing function,

tan0≤ tan(bs−bt)≤ tan
π
6

,

which is to say,

0≤
tanbs− tanbt
1+ tanbs tanbt

≤
1√
3
.

This implies that

0≤
as−at
1+asat

≤
1√
3
,

which completes the proof. #

462 Example Prove that if
a−b
1+ab

+
b− c
1+bc

+
c−a
1+ ca

= 0,

for real numbers a,b,c, then at least two of the numbers a,b,c are equal.

Solution: " ∃u,v,w with − π
2 < u,v,w< π

2 such that a= tanu,b= tanv,c= tanw (why?). The given equation
becomes

tanu− tanv
1+ tanu tanv

+
tanv− tanw
1+ tanv tanw

+
tanw− tanu
1+ tanw tanu

= 0.

Using the addition for the tangents, the preceding relation is equivalent to

tan(u− v)+ tan(v−w)+ tan(w−u) = 0.

Applying tanX+ tanY = (tan(X+Y))(1− tanX tanY ) with X = u− v and Y = v−w, we obtain

(tan(u−w))(1− tan(u− v) tan(v−w))+ tan(w−u) = 0.

Factorising the above expression,

(tan(u−w))(tan(u− v))(tan(v−w)) = 0.

This implies that one of the tangents in this product must be 0. Since

−π < u−w,u− v,v−w< π ,

this means that one of these differences must be exactly 0, which in turn implies that two of the numbers a,b,c
are equal. #

463 Example Prove that

arctana+ arctanb=

















arctan a+b
1−ab if ab< 1,

π
2 (sgn(a)) if ab= 1,

arctan a+b
1−ab + π

2 (sgn(a)) if ab> 1.

.

Solution: " Put x= arctana,y= arctanb. If (x,y) ∈]− π
2 ;

π
2 [
2 and x+ y '= (2n+1)π

2 ,n ∈ Z, then

tan(x+ y) =
tanx+ tany
1− tanx tany

=
a+b
1−ab

.
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Now, −π < x+ y< π . Conditioning on x we have,

−
π
2

< x+ y<
π
2
⇐⇒

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x= 0

or x> 0 and y< π
2 − x

or x< 0 and y>− π
2 − x

The above choices hold if and only if

a= 0

or a> 0 and b< 1
a

or a< 0 and b> 1
a

.

Hence, if ab< 1, then x+ y ∈]− π
2 ;

π
2 [ and thus

x+ y= arctan(tan(x+ y)) = arctan
a+b
1−ab

.

If ab> 1 and a> 0 then x+ y ∈]π2 ;π [ and thus

x+ y= arctan
a+b
1−ab

+π .

If ab> 1 and a< 0, then x+ y ∈]−π ;− π
2 [ and thus

x+ y= arctan
a+b
1−ab

−π .

The case ab= 1 is left as an exercise. #

464 Example Solve the equation arccosx= arcsin 13 + arccos 14 .

Solution: " Observe that arccosx ∈ [0;π ] and that since both 0≤ arcsin 13 ≤
π
2 and 0≤ arccos

1
4 ≤

π
2 , we have

0≤ arcsin 13 + arccos 14 ≤ π . Hence, we may take cosines on both sides of the equation and obtain

x = cos(arccosx)

= cos(arcsin 13 + arccos 14 )

= (cosarcsin 13 )(cosarccos
1
4 )− (sinarcsin 13)(sinarccos

1
4 )

=
√
2
6 −

√
15
12

.

#

465 Example (Machin’s Formula) Prove that

π
4

= 4arctan
1
5
− arctan

1
239

.
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Solution: " Observe that

4arctan 15 = 2arctan 15 +2arctan 15

= 2arctan
1
5+ 1

5
1− 15 ·

1
5

= 2arctan 5
12

= arctan 5
12 + arctan 5

12

= arctan
5
12+

5
12

1− 5
12 ·

5
12

= arctan 120119 .

Also

arctan 120119 − arctan
1
239 = arctan

120
119−

1
239

1+ 120
119 ·

1
239

= arctan1

= π
4 .

Upon assembling the equalities, we obtain the result. #

Homework
9.6.1 Problem Demonstrate the identity

sin(a+b)sin(a−b) = sin2 a− sin2 b= cos2 b− cos2 a

9.6.2 Problem Prove that for all real numbers x,

cos
(

2x−
4π
3

)

+ cos2x+ cos
(

2x+
4π
3

)

= 0.

9.6.3 Problem Using the fact that 112 = 1
3 −

1
4 , find the exact value

of the following.

1. cosπ/12

2. sinπ/12

9.6.4 Problem Write cot(a+b) in terms of cota and cotb.

9.6.5 Problem Write sinx sin2x as a sum of cosines.

9.6.6 Problem Write cosxcos4x as a sum of cosines.

9.6.7 Problem Write using only one arcsine: arccos 45 −arccos
1
4 .

9.6.8 Problem Write using only one arctangent:
arctan 13 −arctan

1
4 .

9.6.9 Problem Write using only one arctangent:
arccot (−2)−arctan(− 23 ).

9.6.10 Problem Write sinxcos2x as a sum of sines.

9.6.11 Problem Write sinx sin2x sin3x as a sum of sines.

9.6.12 Problem Given real numbers a,b with 0< a< π/2 and
π < b< 3π/2 and given that sina= 1/3 and cosb=−1/2, find
cos(a−b).

9.6.13 Problem Solve the equation cosx+cos3x= 0..

9.6.14 Problem Solve the equation

arcsin(tanx) = x.

9.6.15 Problem Solve the equation

arccosx= arcsin(1−x).

9.6.16 Problem Solve the equation

arctanx+arctan2x=
π
4

.

9.6.17 Problem Prove the identity

cos4 x=
1
8
(cos4x+4cos2x+3).
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9.6.18 Problem Prove the identities

tana+ tanb=
sin(a+b)

(cosa)(cosb)
,

cota+cotb=
sin(a+b)

(sina)(sinb)
.

9.6.19 Problem Given that 0≤ α,β ,γ ≤ π
2 and satisfy

sinα = 12/13,cosβ = 8/17,sin γ = 4/5, find the value of
sin(α+β − γ) and cos(α−β +2γ).

9.6.20 Problem Establish the identity

sin(a−b)sin(a+b)
1− tan2 acot2 b

=−cos2 asin2 b.

9.6.21 Problem Find real constants a,b,c such that

sin3x−
√
3cos3x= asin(bx+c).

Use this to solve the equation

sin3x−
√
3cos3x=−

√
2.

9.6.22 Problem Solve the equation

sin2x+cos2x =−1

9.6.23 Problem Simplify: sin(arcsec
17
8
−arctan(−

2
3
)).

9.6.24 Problem Shew that if cot(a+b) = 0 then
sin(a+2b) = sina.

9.6.25 Problem Let a+b+c = π
2 . Write cosacosbcosc as a sum

of sines.

9.6.26 Problem Shew that the amplitude of x "→ asinAx+bcosAx
is
√
a2+b2.

9.6.27 Problem Solve the equation

cosx− sinx= 1.

9.6.28 Problem Let a+b+c = π . Simplify

sin2 a+ sin2 b+ sin2 c−2cosacosbcosc.

9.6.29 Problem Prove that if

cota+cscacosbsecc= cotb+cosacscbsecc,

then either a−b = kπ , or a+b+c = π+2mπ or
a+b−c = π+2nπ for some integers k,m,n.

9.6.30 Problem Prove that if

tana+ tanb+ tanc= tana tanb tanc,

then a+b+c = kπ for some integer k.

9.6.31 Problem Prove that if any of a+b+c, a+b−c, a−b+c
or a−b−c is equal to an odd multiple of π , then

cos2 a+cos2 b+cos2 c+2cosacosbcosc= 1,

and that the converse is also true.
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A.1 Arithmetic of Complex Numbers
One uses the symbol i to denote the imaginary unit i=

√
−1. Then i2 =−1.

466 Example Find
√
−25.

Solution: "
√
−25= 5i. #

Since i0 = 1, i1 = i, i2 =−1, i3 =−i, i4 = 1, i5 = i, etc., the powers of i repeat themselves cyclically in a cycle of period 4.

467 Example Find i1934.

Solution: " Observe that 1934= 4(483)+2 and so i1934 = i2 =−1. #

468 Example For any integral α one has

iα + iα+1+ iα+2+ iα+3 = iα(1+ i+ i2+ i3) = iα(1+ i−1− i)= 0.

If a,b are real numbers then the object a+bi is called a complex number. One uses the symbol C to denote the set of all
complex numbers. If a,b,c,d ∈ R, then the sum of the complex numbers a+bi and c+di is naturally defined as

(a+bi)+ (c+di)= (a+ c)+ (b+d)i (A.1)

The product of a+bi and c+di is obtained by multiplying the binomials:

(a+bi)(c+di) = ac+adi+bci+bdi2= (ac−bd)+ (ad+bc)i (A.2)

469 Example Find the sum (4+3i)+ (5−2i) and the product (4+3i)(5−2i).

Solution: " One has
(4+3i)+ (5−2i)= 9+ i

and
(4+3i)(5−2i)= 20−8i+15i−6i2= 20+7i+6= 26+7i.

#

470 Definition Let z ∈C,(a,b) ∈ R2 with z= a+bi. The conjugate z of z is defined by

z= a+bi= a−bi (A.3)

471 Example The conjugate of 5+3i is 5+3i= 5−3i. The conjugate of 2−4i is 2−4i= 2+4i.

! The conjugate of a real number is itself, that is, if a ∈R, then a= a. Also, the conjugate of the conjugate of
a number is the number, that is, z= z.

472 Theorem The function z :C→C, z "→ z is multiplicative, that is, if z1,z2 are complex numbers, then

z1z2 = z1 · z2 (A.4)

189
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Proof: Let z1 = a+bi,z2 = c+di where a,b,c,d are real numbers. Then

z1z2 = (a+bi)(c+di)

= (ac−bd)+ (ad+bc)i

= (ac−bd)− (ad+bc)i

Also,

z1 · z2 = (a+bi)(c+di)

= (a−bi)(c−di)

= ac−adi−bci+bdi2

= (ac−bd)− (ad+bc)i,

which establishes the equality between the two quantities. ❑

473 Example Express the quotient 2+3i
3−5i

in the form a+bi.

Solution: " One has

2+3i
3−5i

=
2+3i
3−5i

·
3+5i
3+5i

=
−9+19i
34

=
−9
34

+
19i
34

#

474 Definition The modulus |a+bi| of a+bi is defined by

|a+bi|=
√

(a+bi)(a+bi) =
√

a2+b2 (A.5)

Observe that z "→ |z| is a function mapping C to [0;+∞[.

475 Example Find |7+3i|.

Solution: " |7+3i|=
√

(7+3i)(7−3i)=
√
72+32 =

√
58. #

476 Example Find |
√
7+3i|.

Solution: " |
√
7+3i|=

√

(
√
7+3i)(

√
7−3i) =

√
7+32 = 4. #

477 Theorem The function z "→ |z|, C→R+ is multiplicative. That is, if z1,z2 are complex numbers then

|z1z2| = |z1||z2| (A.6)
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Proof: By Theorem 472, conjugation is multiplicative, hence

|z1z2| =
√
z1z2z1z2

=
√
z1z2z1 · z2

=
√
z1z1z2z2

=
√
z1z1
√
z2z2

= |z1||z2|

whence the assertion follows. ❑

478 Example Write (22+32)(52+72) as the sum of two squares.

Solution: " The idea is to write 22+32 = |2+3i|2, 52+72 = |5+7i|2 and use the multiplicativity of the
modulus. Now

(22+32)(52+72) = |2+3i|2|5+7i|2

= |(2+3i)(5+7i)|2

= |−11+29i|2

= 112+292

#

A.2 Equations involving Complex Numbers
Recall that if ux2+ vx+w= 0 with u '= 0, then the roots of this equation are given by the Quadratic Formula

x=−
v
2u

±
√
v2−4uw
2u

(A.7)

The quantity v2−4uw under the square root is called the discriminant of the quadratic equation ux2+ vx+w= 0. If u,v,w
are real numbers and this discriminant is negative, one obtains complex roots.
Complex numbers thus occur naturally in the solution of quadratic equations. Since i2 =−1, one sees that x= i is a root of
the equation x2+1= 0. Similary, x=−i is also a root of x2+1.

479 Example Solve 2x2+6x+5= 0

Solution: " Using the quadratic formula

x=−
6
4
±
√
−4
4

=−
3
2
± i
1
2

#

In solving the problems that follow, the student might profit from the following identities.

s2− t2 = (s− t)(s+ t) (A.8)

s2k− t2k = (sk− tk)(sk + tk), k ∈ N (A.9)
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s3− t3 = (s− t)(s2+ st+ t2) (A.10)

s3+ t3 = (s+ t)(s2− st+ t2) (A.11)

480 Example Solve the equation x4−16= 0.

Solution: " One has x4−16= (x2−4)(x2+4) = (x−2)(x+2)(x2+4). Thus either x=−2,x= 2 or
x2+4= 0. This last equation has roots±2i. The four roots of x4−16= 0 are thus
x=−2,x= 2,x=−2i,x= 2i. #

481 Example Find the roots of x3−1= 0.

Solution: " x3−1= (x−1)(x2+ x+1). If x '= 1, the two solutions to x2+ x+1= 0 can be obtained using the

quadratic formula, getting x=−
1
2
± i
√
3
2
. #

482 Example Find the roots of x3+8= 0.

Solution: " x3+8= (x+2)(x2−2x+4). Thus either x=−2 or x2−2x+4= 0. Using the quadratic
formula, one sees that the solutions of this last equation are x= 1± i

√
3. #

483 Example Solve the equation x4+9x2+20= 0.

Solution: " One sees that
x4+9x2+20= (x2+4)(x2+5) = 0

Thus either x2+4= 0, in which case x= ±2i or x2+5= 0 in which case x= ±i
√
5. The four roots are

x= ±2i,±i
√
5 #

Homework

A.2.1 Problem Perform the following operations. Write your
result in the form a+bi, with (a,b) ∈ R2.

1.
√
36+

√
−36

2. (4+8i)− (9−3i)+5(2+ i)−8i
3. 4+5i+6i2 +7i3

4. i(1+ i)+2i2(3−4i)
5. (8−9i)(10+11i)
6. i1990+ i1991+ i1992+ i1993

7.
2− i
2+ i

8.
1− i
1+2i

+
1+ i
1+2i

9. (5+2i)2+(5−2i)2

10. (1+ i)3

A.2.2 Problem Find real numbers a,b such that

(a−2)+(5b+3)i = 4−2i

A.2.3 Problem Write (22+32)(32+72) as the sum of two squares.

A.2.4 Problem Prove that (1+ i)2 = 2i and that (1− i)2 =−2i.
Use this to write

(1+ i)2004

(1− i)2000

in the form a+bi, (a,b) ∈R2.

A.2.5 Problem Prove that (1+ i
√
3)3 = 8. Use this to prove that

(1+ i
√
3)30 = 230.

A.2.6 Problem Find |5+7i|, |
√
5+7i|, |5+ i

√
7| and |

√
5+ i
√
7|.

A.2.7 Problem Prove that if k is an integer then

(4k+1)i4k+(4k+2)i4k+1+(4k+3)i4k+2+(4k+4)i4k+3 =−2−2i.

Use this to prove that

1+2i+3i2 +4i3+ · · ·+1995i1994+1996i1995 =−998−998i.

A.2.8 Problem If z and z′ are complex numbers with either |z| = 1
or |z′| = 1, prove that

∣
∣
∣
∣

z− z′

1− zz′

∣
∣
∣
∣
= 1.
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A.2.9 Problem Prove that if z,z′ and w are complex numbers with
|z| = |z′| = |w| = 1, then

|zz′+ zw+ z′w| = |z+ z′+w|

A.2.10 Problem Prove that if n is an integer which is not a
multiple of 4 then

1n+ in+ i2n+ i3n = 0.

Now let

f (x) = (1+x+x2)1000 = a0+a1x+ · · ·+a2000x2000.

By considering f (1)+ f (i)+ f (i2)+ f (i3), find

a0+a4+a8+ · · ·+a2000.

A.2.11 Problem Find all the roots of the following equations.

1. x2+8= 0

2. x2+49 = 0

3. x2−4x+5 = 0

4. x2−3x+6 = 0

5. x4−1= 0

6. x4+2x2−3= 0

7. x3−27 = 0

8. x6−1= 0

9. x6−64 = 0

A.3 Polar Form of Complex Numbers
Complex numbers can be given a geometric representation in the Argand diagram (see figure A.1), where the horizontal axis
carries the real parts and the vertical axis the imaginary ones.

a+bi

θ
a

b

ℑ

ℜ

Figure A.1: Argand’s diagram.

z

|z|

|z|
sin

θ
|z|cosθ
θ

ℑ

ℜ

Figure A.2: Polar Form of a Complex Number.

Given a complex number z= a+bi on the Argand diagram, consider the angle θ ∈]−π ;π ] that a straight line segment
passing through the origin and through z makes with the positive real axis. Considering the polar coordinates of z we gather

z= |z|(cosθ + isinθ ), θ ∈]−π ;π ], (A.12)

which we call the polar form of the complex number z. The angle θ is called the argument of the complex number z.

484 Example Find the polar form of
√
3− i.

Solution: " First observe that |
√
3− i| =

√√
32+12 = 2. Now, if

√
3− i= 2(cosθ + isinθ ),

we need cosθ =

√
3
2
, sinθ =−

1
2
. This happens for θ ∈]−π ;π ] when θ =−

π
6
. Therefore,

√
3− i= 2(cos

(

−
π
6

)

+ isin
(

−
π
6

)

is the required polar form. #

We now present some identities involving complex numbers. Let us start with the following classic result. The proof requires
Calculus and can be omitted.
If we allow complex numbers in our MacLaurin expansions, we readily obtain Euler’s Formula.
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485 Theorem (Euler’s Formula) Let x ∈ R. Then

eix = cosx+ isinx.

Proof: Using the MacLaurin expansion’s of x "→ ex, x "→ cosx, and x "→ sinx, we gather

eix = ∑+∞
k=0

(ix)n

n!

= ∑+∞
k=0

(ix)2n

(2n)!
+∑+∞

k=0
(ix)2n+1

(2n+1)!

= ∑+∞
k=0

(−1)nx2n

(2n)!
+ i∑+∞

k=0
(−1)nx2n+1

(2n+1)!

= cosx+ isinx.

❑

Taking complex conjugates,
e−ix = eix = cosx+ isinx= cosx− isinx.

Solving for sinx we obtain

sinx=
eix− e−ix

2i
(A.13)

Similarly,

cosx=
eix+ e−ix

2
(A.14)

486 Corollary (De Moivre’s Theorem) Let n ∈ Z and x ∈ R. Then

(cosx+ isinx)n = cosnx+ isinnx

Proof: We have
(cosx+ isinx)n = (eix)n = eixn = cosnx+ isinnx,

by theorem 485.

Aliter: An alternative proof without appealing to Euler’s identity follows. We first assume that n> 0 and give a
proof by induction. For n= 1 the assertion is obvious, as

(cosx+ isinx)1 = cos1 · x+ isin1 · x.

Assume the assertion is true for n−1> 1, that is, assume that

(cosx+ isinx)n−1 = cos(n−1)x+ isin(n−1)x.

Using the addition identities for the sine and cosine,

(cosx+ isinx)n = (cosx+ isinx)(cosx+ isinx)n−1

= (cosx+ isinx)(cos(n−1)x+ isin(n−1)x).

= (cosx)(cos(n−1)x)− (sinx)(sin(n−1)x)+ i((cosx)(sin(n−1)x)+ (cos(n−1)x)(sinx)).

= cos(n−1+1)x+ isin(n−1+1)x

= cosnx+ isinnx,
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proving the theorem for n> 0.

Assume now that n< 0. Then −n> 0 and we may used what we just have proved for positive integers we have

(cosx+ isinx)n =
1

(cosx+ isinx)−n

=
1

cos(−nx)+ isin(−nx)

=
1

cosnx− isinnx

=
cosnx+ isinnx

(cosnx+ isinnx)(cosnx− isinnx)

=
cosnx+ isinnx
cos2 nx+ sin2 nx

= cosnx+ isinnx,

proving the theorem for n< 0. If n= 0, then since sin and cos are not simultaneously zero, we get
1= (cosx+ isinx)0 = cos0x+ isin0x= cos0x= 1, proving the theorem for n= 0.
❑

487 Example Prove that
cos3x= 4cos3 x−3cosx, sin3x= 3sinx−4sin3 x.

Solution: " Using Euler’s identity and the Binomial Theorem,

cos3x+ isin3x = e3ix

= (eix)3 = (cosx+ isinx)3

= cos3 x+3icos2 xsinx−3cosxsin2 x− isin3 x

= cos3 x+3i(1− sin2 x)sinx−3cosx(1− cos2 x)− isin3 x,

we gather the required identities. #

The following corollary is immediate.

488 Corollary (Roots of Unity) If n> 0 is an integer, the n numbers e2π ik/n = cos
2πk
n

+ isin
2πk
n
, 0≤ k ≤ n−1, are all

different and satisfy (e2π ik/n)n = 1.

Figure A.3: Cubic Roots of 1. Figure A.4: Quartic Roots of 1. Figure A.5: Quintic Roots of 1.



196 Appendix A

489 Example For n= 2, the square roots of unity are the roots of

x2−1= 0 =⇒ x ∈ {−1,1}.

For n= 3 we have x3−1= (x−1)(x2+ x+1) = 0 hence if x '= 1 then x2+ x+1= 0 =⇒ x=
−1± i

√
3

2
. Hence the cubic

roots of unity are
{

−1,
−1− i

√
3

2
,
−1+ i

√
3

2

}

.

Or, we may find them trigonometrically,

e2π i·0/3 = cos
2π ·0
3

+ isin
2π ·0
3

= 1,

e2π i·1/3 = cos
2π ·1
3

+ isin
2π ·1
3

= −
1
2

+ i
√
3
2

e2π i·2/3 = cos
2π ·2
3

+ isin
2π ·2
3

= −
1
2
− i
√
3
2

For n= 4 they are the roots of x4−1= (x−1)(x3+ x2+ x+1) = (x−1)(x+1)(x2+1) = 0, which are clearly

{−1,1,−i, i}.

Or, we may find them trigonometrically,

e2π i·0/4 = cos
2π ·0
4

+ isin
2π ·0
4

= 1,

e2π i·1/4 = cos
2π ·1
4

+ isin
2π ·1
4

= i

e2π i·2/4 = cos
2π ·2
4

+ isin
2π ·2
4

= −1

e2π i·3/4 = cos
2π ·3
4

+ isin
2π ·3
4

= −i

For n= 5 they are the roots of x5−1= (x−1)(x4+ x3+ x2+ x+1) = 0. To solve x4+ x3+ x2+ x+1= 0 observe that since
clearly x '= 0, by dividing through by x2, we can transform the equation into

x2+
1
x2

+ x+
1
x

+1= 0.

Put now u= x+
1
x
. Then u2−2= x2+

1
x2
, and so

x2+
1
x2

+ x+
1
x

+1= 0 =⇒ u2−2+u+1= 0 =⇒ u=
−1±

√
5

2
.

Solving both equations

x+
1
x

=
−1−

√
5

2
, x+

1
x

=
−1+

√
5

2
,

we get the four roots
{

−1−
√
5

4
− i

√

10−2
√
5

4
,
−1−

√
5

4
+ i

√

10−2
√
5

4
,

√
5−1
4
− i

√

2
√
5+10
4

,

√
5−1
4

+ i

√

2
√
5+10
4

}

,
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or, we may find, trigonometrically,

e2π i·0/5 = cos
2π ·0
5

+ isin
2π ·0
5

= 1,

e2π i·1/5 = cos
2π ·1
5

+ isin
2π ·1
5

=

(√
5−1
4

)

+ i

(√
2 ·
√

5+
√
5

4

)

,

e2π i·2/5 = cos
2π ·2
5

+ isin
2π ·2
5

=

(

−
√
5−1
4

)

+ i

(√
2 ·
√

5−
√
5

4

)

,

e2π i·3/5 = cos
2π ·3
5

+ isin
2π ·3
5

=

(

−
√
5−1
4

)

− i

(√
2 ·
√

5−
√
5

4

)

,

e2π i·4/5 = cos
2π ·4
5

+ isin
2π ·4
5

=

(√
5−1
4

)

− i

(√
2 ·
√

5+
√
5

4

)

,

See figures A.3 through A.5.

By the Fundamental Theorem of Algebra the equation xn−1= 0 has exactly n complex roots, which gives the following
result.

490 Corollary Let n> 0 be an integer. Then

xn−1=
n−1

∏
k=0

(x− e2π ik/n).

491 Theorem We have,

1+ x+ x2+ · · ·+ xn−1 =










0 x= e
2πik
n , 1≤ k ≤ n−1,

n x= 1.

Proof: Since xn−1= (x−1)(xn−1+ xn−2+ · · ·+ x+1), from Corollary 490, if x '= 1,

xn−1+ xn−2+ · · ·+ x+1=
n−1

∏
k=1

(x− e2π ik/n).

If ε is a root of unity different from 1, then ε = e2π ik/n for some k ∈ [1;n−1], and this proves the theorem.
Alternatively,

1+ ε+ ε2+ ε3+ · · ·+ εn−1 =
εn−1
ε−1

= 0.

This gives the result. ❑

We may use complex numbers to select certain sums of coefficients of polynomials. The following problem uses the fact that
if k is an integer

ik + ik+1+ ik+2+ ik+3 = ik(1+ i+ i2+ i3) = 0 (A.15)

492 Example Let
(1+ x4+ x8)100 = a0+a1x+a2x2+ · · ·+a800x800.

Find:

➊ a0+a1+a2+a3+ · · ·+a800.

➋ a0+a2+a4+a6+ · · ·+a800.

➌ a1+a3+a5+a7+ · · ·+a799.
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➍ a0+a4+a8+a12+ · · ·+a800.

➎ a1+a5+a9+a13+ · · ·+a797.

Solution: " Put
p(x) = (1+ x4+ x8)100 = a0+a1x+a2x2+ · · ·+a800x800.

Then

➊

a0+a1+a2+a3+ · · ·+a800 = p(1) = 3100.

➋

a0+a2+a4+a6+ · · ·+a800 =
p(1)+ p(−1)

2
= 3100.

➌

a1+a3+a5+a7+ · · ·+a799 =
p(1)− p(−1)

2
= 0.

➍

a0+a4+a8+a12+ · · ·+a800 =
p(1)+ p(−1)+ p(i)+ p(−i)

4
= 2 ·3100.

➎

a1+a5+a9+a13+ · · ·+a797 =
p(1)− p(−1)− ip(i)+ ip(−i)

4
= 0.

#

Homework
A.3.1 Problem Prove that

cos6 2x=
1
32
cos12x+

3
16
cos8x+

15
32
cos4x+

5
16

.

A.3.2 Problem Prove that
√
3= tan

π
9

+4sin
π
9

.



B Binomial Theorem

B.1 Pascal’s Triangle
It is well known that

(a+b)2 = a2+2ab+b2 (B.1)

Multiplying this last equality by a+b one obtains

(a+b)3 = (a+b)2(a+b) = a3+3a2b+3ab2+b3

Again, multiplying
(a+b)3 = a3+3a2b+3ab2+b3 (B.2)

by a+b one obtains
(a+b)4 = (a+b)3(a+b) = a4+4a3b+6a2b2+4ab3+b4

Dropping the variables, a pattern with the coefficients emerges, a pattern called Pascal’s Triangle.

Pascal’s Triangle
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
.................................................................................................................................

...........................................................................................................................................

Notice that each entry different from 1 is the sum of the two neighbours just above it.
Pascal’s Triangle can be used to expand binomials to various powers, as the following examples shew.

493 Example

(4x+5)3 = (4x)3+3(4x)2(5)+3(4x)(5)2+53

= 64x3+240x2+300x+125

494 Example

(2x− y2)4 = (2x)4+4(2x)3(−y2)+6(2x)2(−y2)2+

+4(2x)(−y2)3+(−y2)4

= 16x4−32x3y2+24x2y4−8xy6+ y8

495 Example

(2+ i)5 = 25+5(2)4(i)+10(2)3(i)2+

+10(2)2(i)3+5(2)(i)4+ i5

= 32+80i−80−40i+10+ i

= −38+39i

199
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496 Example

(
√
3+
√
5)4 = (

√
3)4+4(

√
3)3(
√
5)

+6(
√
3)2(
√
5)2+4(

√
3)(
√
5)3+(

√
5)4

= 9+12
√
15+90+20

√
15+25

= 124+32
√
15

497 Example Given that a−b= 2,ab= 3 find a3−b3.

Solution: " One has

8 = 23

= (a−b)3

= a3−3a2b+3ab2−b3 = a3−b3−3ab(a−b)

= a3−b3−18,

whence a3−b3 = 26.
Aliter: Observe that 4= 22 = (a−b)2 = a2+b2−2ab= a2−b2−6, whence a2+b2 = 10. This entails that

a3−b3 = (a−b)(a2+ab+b2) = (2)(10+3) = 26,

as before. #

B.2 Homework

B.2.1 Problem Expand
1. (x−4y)3

2. (x3+y2)4

3. (2+3x)3

4. (2i−3)4

5. (2i+3)4+(2i−3)4

6. (2i+3)4− (2i−3)4

7. (
√
3−
√
2)3

8. (
√
3+
√
2)3+(

√
3−
√
2)3

9. (
√
3+
√
2)3− (

√
3−
√
2)3

B.2.2 Problem Prove that

(a+b+c)2 = a2+b2+c2+2(ab+bc+ca)

Prove that

(a+b+c+d)2 = a2+b2+c2+d2+2(ab+ac+ad+bc+bd+cd)

Generalise.

B.2.3 Problem Compute (x+2y+3z)2.

B.2.4 Problem Given that a+2b =−8, ab= 4, find (i) a2+4b2,
(ii) a3+8b3, (iii)

1
a

+
1
2b
.

B.2.5 Problem The sum of the squares of three consecutive
positive integers is 21170. Find the sum of the cubes of those three
consecutive positive integers.

B.2.6 Problem What is the coefficient of x4y6 in

(x
√
2−y)10?

Answer: 840.

B.2.7 Problem Expand and simplify

(
√

1−x2+1)7− (
√

1−x2−1)7.



C Sequences and Series

C.1 Sequences
498 Definition A sequence of real numbers is a function whose domain is the set of natural numbers and whose output is a
subset of the real numbers. We usually denote a sequence by one of the notations

a0,a1,a2, . . . ,

or
{an}+∞

n=0 .

! Sometimes we may not start at n= 0. In that case we may write

am,am+1,am+2, . . . ,

or
{an}+∞

n=m ,

where m is a non-negative integer.

We will be mostly interested in two types of sequences: sequences that have an explicit formula for their n-th term and
sequences that are defined recursively.

499 Example Let an = 1− 1
2n ,n= 0,1, . . .. Then {an}+∞

n=0 is a sequence for which we have an explicit formula for the n-th
term. The first five terms are

a0 = 1− 1
20 = 0,

a1 = 1− 1
21 = 1

2 ,

a2 = 1− 1
22 = 3

4 ,

a3 = 1− 1
23 = 7

8 ,

a4 = 1− 1
24 = 15

16 .

500 Example Let

x0 = 1, xn =

(

1+
1
n

)

xn−1, n= 1,2, . . . .

Then {xn}+∞
n=0 is a sequence recursively defined. The terms x1,x2, . . . ,x5 are

x1 =
(

1+ 1
1
)

x0 = 2,

x2 =
(

1+ 1
2
)

x1 = 3,

x3 =
(

1+ 1
3
)

x2 = 4,

x4 =
(

1+ 1
4
)

x3 = 5,

x5 =
(

1+ 1
5
)

x4 = 6.

You might conjecture that an explicit formula for xn is xn = n+1, and you would be right!
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501 Definition A sequence {an}+∞
n=0 is said to be increasing if an ≤ an+1 ∀n ∈ N1 and strictly increasing if

an < an+1 ∀n ∈ N2

Similarly, a sequence {an}+∞
n=0 is said to be decreasing if an ≥ an+1 ∀n ∈N3 and strictly decreasing if an > an+1 ∀n ∈ N4

A sequence is monotonic if is either increasing, strictly increasing, decreasing, or strictly decreasing.

502 Example Recall that 0!= 1, 1!= 1, 2!= 1 ·2= 2, 3!= 1 ·2 ·3= 6, etc. Prove that the sequence xn = n!,n= 0,1,2, . . .
is strictly increasing for n≥ 1.

Solution: " For n> 1 we have
xn = n!= n(n−1)!= nxn−1 > xn−1,

since n> 1. This proves that the sequence is strictly increasing. #

503 Example Prove that the sequence xn = 2+
1
2n
, n= 0,1,2, . . . is strictly decreasing.

Solution: " We have

xn+1− xn =

(

2+
1
2n+1

)

−
(

2+
1
2n

)

=
1
2n+1

−
1
2n

= −
1
2n+1

< 0,

whence
xn+1− xn < 0 =⇒ xn+1 < xn,

i.e., the sequence is strictly decreasing. #

504 Example Prove that the sequence xn =
n2+1
n

, n= 1,2, . . . is strictly increasing.

Solution: " First notice that
n2+1
n

= n+
1
n
. Now,

xn+1− xn =

(

n+1+
1

n+1

)

−
(

n+
1
n

)

= 1+
1

n+1
−
1
n

= 1−
1

n(n+1)

> 0,

since from 1 we are subtracting a proper fraction less than 1. Hence

xn+1− xn > 0 =⇒ xn+1 > xn,

i.e., the sequence is strictly increasing. #
1Some people call these sequences non-decreasing.
2Some people call these sequences increasing.
3Some people call these sequences non-increasing.
4Some people call these sequences decreasing.
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505 Definition A sequence {xn}+∞
n=0 is said to be bounded if eventually the absolute value of every term is smaller than a

certain positive constant. The sequence is unbounded if given an arbitrarily large positive real number we can always find a
term whose absolute value is greater than this real number.

506 Example Prove that the sequence xn = n!,n= 0,1,2, . . . is unbounded.

Solution: " Let M > 0 be a large real number. Then its integral part ?M@ satisfies the inequality
M−1< ?M@ ≤M and so ?M@+1>M. We have

x?M@+1 = (?M@+1)!= (?M@+1)(?M@)(?M@−1) · · ·2 ·1>M,

since the first factor is greater than M and the remaining factors are positive integers.

#

507 Example Prove that the sequence an =
n+1
n

, n= 1,2, . . . , is bounded.

Solution: " Observe that an =
n+1
n

= 1+
1
n
. Since

1
n
strictly decreases, each term of an becomes smaller

and smaller. This means that each term is smaller that a1 = 1+
1
2
. Thus an < 2 for n≥ 2 and the sequence is

bounded. #

Homework

C.1.1 Problem Find the first five terms of the following sequences.

1. xn = 1+(−2)n,n=
0,1,2, . . .

2. xn = 1+(− 12 )
n,n=

0,1,2, . . .
3. xn = n!+1,n =
0,1,2, . . .

4. xn =
1

n!+(−1)n
,n=

2,3,4, . . .

5. xn =

(

1+
1
n

)n
,n=

1,2, . . . ,

C.1.2 Problem Decide whether the following sequences are
eventually monotonic or non-monotonic. Determine whether they

are bounded or unbounded.

1. xn = n, n= 0,1,2, . . .
2. xn = (−1)nn,

n= 0,1,2, . . .

3. xn =
1
n!

, n= 0,1,2, . . .

4. xn =
n

n+1
,

n= 0,1,2, . . .
5. xn = n2−n,

n= 0,1,2, . . .

6. xn = (−1)n,
n= 0,1,2, . . .

7. xn = 1−
1
2n

,

n= 0,1,2, . . .

8. xn = 1+
1
2n

,

n= 0,1,2, . . .

C.2 Convergence and Divergence
We are primarily interested in the behaviour that a sequence {an}+∞

n=0 exhibits as n gets larger and larger. First some
shorthand.

508 Definition The notation n→+∞ means that the natural number n increases or tends towards+∞, that is, that it
becomes bigger and bigger.

509 Definition We say that the sequence {xn}+∞
n=0 converges

5 to a limit L, written xn→ L as n→+∞, if eventually all terms
after a certain term are closer to L by any preassigned distance. A sequence which does not converge is said to diverge.

To illustrate the above definition, some examples are in order.

5This definition is necessarily imprecise, as we want to keep matters simple. A more precise definition is the following: we say that a sequence cn,n =
0,1,2, . . . converges to L (written cn→ L) as n→+∞, if ∀ε > 0 ∃N ∈N such that |cn−L|< ε ∀n>N.We say that a sequence dn,n= 0,1,2, . . . diverges to+∞
(written dn→+∞) as n→+∞, if ∀M > 0 ∃N ∈N such that dn >M ∀n> N. A sequence fn,n= 0,1,2, . . . diverges to−∞ if the sequence − fn,n= 0,1,2, . . .
converges to +∞.
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510 Example The constant sequence
1,1,1,1, . . .

converges to 1.

511 Example Consider the sequence
1,
1
2
,
1
3
, . . . ,

1
n
, . . . ,

We claim that
1
n
→ 0 as n→+∞. Suppose we wanted terms that get closer to 0 by at least .00001=

1
105

. We only need to

look at the 100000-term of the sequence:
1

100000
=

1
105

. Since the terms of the sequence get smaller and smaller, any term
after this one will be within .00001 of 0. We had to wait a long time—till after the 100000-th term—but the sequence
eventually did get closer than .00001 to 0. The same argument works for any distance, no matter how small, so we can
eventually get arbitrarily close to 0.6.

512 Example The sequence
0,1,4,9,16, . . . ,n2, . . .

diverges to +∞, as the sequence gets arbitrarily large.7

513 Example The sequence
1,−1,1,−1,1,−1, . . . ,(−1)n, . . .

has no limit (diverges), as it bounces back and forth from −1 to +1 infinitely many times.

514 Example The sequence
0,−1,2,−3,4,−5, . . . ,(−1)nn, . . . ,

has no limit (diverges), as it is unbounded and alternates back and forth positive and negative values..

| | | | | | |
x0 x1 x2 . . .

xn . . .
s

Figure C.1: Theorem 515.

When is it guaranteed that a sequence of real numbers has a limit? We have the following result.
6A rigorous proof is as follows. If ε > 0 is no matter how small, we need only to look at the terms after N = ? 1ε +1@ to see that, indeed, if n> N, then

sn =
1
n

<
1
N

=
1

? 1ε +1@
< ε .

Here we have used the inequality
t−1< ?t@ ≤ t, ∀t ∈ R.

7A rigorous proof is as follows. IfM > 0 is no matter how large, then the terms after N = ?
√
M@+1 satisfy (n > N)

tn = n2 > N2 = (?
√
M@+1)2 >M.



Homework 205

515 Theorem Every bounded increasing sequence {an}+∞
n=0 of real numbers converges to its supremum. Similarly, every

bounded decreasing sequence of real numbers converges to its infimum.

Proof: The idea of the proof is sketched in figure C.1. By virtue of Axiom ??, the sequence has a supremum s.
Every term of the sequence satisfies an ≤ s. We claim that eventually all the terms of the sequence are closer to s
than a preassigned small distance ε > 0. Since s− ε is not an upper bound for the sequence, there must be a
term of the sequence, say an0 with s− ε ≤ an0 by virtue of the Approximation Property Theorem ??. Since the
sequence is increasing, we then have

s− ε ≤ an0 ≤ an0+1 ≤ an0+2 ≤ an0+2 ≤ . . .≤ s,

which means that after the n0-th term, we get to within ε of s.

To obtain the second half of the theorem, we simply apply the first half to the sequence {−an}+∞
n=0. ❑

Homework

C.2.1 Problem Give plausible arguments to convince yourself that
1. 1

2n → 0 as n→+∞

2. 2n→+∞ as n→+∞

3. 1
n! → 0 as n→+∞

4. n+1
n → 1 as n→+∞

5. ( 23 )
n→ 0 as n→+∞

6. ( 32 )
n→+∞ as n→+∞

7. the sequence (−2)n,n= 0,1, . . . diverges as n→+∞

8. n
2n → 0 as n→+∞

9. 2n
n →+∞ as n→+∞

10. the sequence 1+(−1)n,n= 0,1, . . . diverges as n→+∞

C.3 Finite Geometric Series
516 Definition A geometric sequence or progression is a sequence of the form

a, ar,ar2, ar3, ar4, . . . ,

that is, every term is produced from the preceding one by multiplying a fixed number. The number r is called the common
ratio.

!

1. Trivially, if a= 0, then every term of the progression is 0, a rather uninteresting case.
2. If ar '= 0, then the common ratio can be found by dividing any term by that which immediately precedes it.

3. The n-th term of the progression
a, ar,ar2, ar3, ar4, . . . ,

is arn−1.

517 Example Find the 35-th term of the geometric progression

1√
2
, −2,

8√
2
, . . . .

Solution: " The common ratio is −2÷ 1√
2 =−2

√
2. Hence the 35-th term is

1√
2 (−2

√
2)34 = 251√

2 = 1125899906842624
√
2. #

518 Example The fourth term of a geometric progression is 24 and its seventh term is 192. Find its second term.
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Solution: " We are given that ar3 = 24 and ar6 = 192, for some a and r. Clearly, ar '= 0, and so we find

ar6

ar3
= r3 =

192
24

= 8,

whence r = 2. Now, a(2)3 = 24, giving a= 3. The second term is thus ar= 6. #

519 Example Find the sum
2+22+23+24+ · · ·+264.

Estimate (without a calculator!) how big this sum is.

Solution: " Let
S = 2+22+23+24+ · · ·+264.

Observe that the common ratio is 2. We multiply S by 2 and notice that every term, with the exception of the last,
appearing on this new sum also appears on the first sum. We subtract S from 2S:

S = 2 + 22 + 23 + 24 + · · · + 264

2S = 22 + 23 + 24 + · · · + 264 + 265

2S−S = −2+265

Thus S = 265−2. To estimate this sum observe that 210 = 1024≈ 103. Therefore

265 = (210)6 · (25) = 32(210)6 ≈ 32(103)6 = 32×1018 = 3.2×1019.

The exact answer (obtained via Maple$), is

265−2= 36893488147419103230.

My pocket calculator yields 3.689348815×1019. Our estimate gives the right order of decimal places. #

!
1. If a chess player is paid $2 for the first square of a chess board, $4 for the second square, $8 for the third

square, etc., after reaching the 64-th square he would be paid $36893488147419103230. Query: After
which square is his total more than $1000000?

2. From the above example, the sum of a geometric progression with positive terms and common ratio r > 1
grows rather fast rather quickly.

520 Example Sum
2
3

+
2
32

+
2
33

+ · · ·+
2
399

.

Solution: " Put
S =

2
3

+
2
32

+
2
33

+ · · ·+
2
399

.

Then
1
3
S =

2
32

+
2
33

+
2
34

+ · · ·+
2
3100

.

Subtracting,

S−
1
3
S =

2
3
S =

2
3
−

2
3100

.

It follows that

S =
3
2

(
2
3
−

2
3100

)

= 1−
1
399

.

#
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! The sum of the first two terms of the series in example 520 is 23 + 2
32 = 8

9 , which, though close to 1 is not as
close as the sum of the first 99 terms. A geometric progression with positive terms and common ratio 0< r < 1
has a sum that grows rather slowly.

To close this section we remark that the approximation 210 ≈ 1000 is a useful one. It is nowadays used in computer lingo,
where a kilobyte is 1024 bytes—“kilo” is a Greek prefix meaning “thousand.”

521 Example Without using a calculator, determine which number is larger: 2900 or 3500.

Solution: " The idea is to find a power of 2 close to a power of 3. One readily sees that 23 = 8< 9= 32. Now,
raising both sides to the 250-th power,

2750 = (23)250 < (32)250 = 3500.

The inequality just obtained is completely useless, it does not answer the question addressed in the problem.
However, we may go around this with a similar idea. Observe that 9< 8

√
2: for, if 9≥ 8

√
2, squaring both sides

we would obtain 81> 128, a contradiction. Raising 9< 8
√
2 to the 250-th power we obtain

3500 = (32)250 < (8
√
2)250 = 2875 < 2900,

whence 2900 is greater. #

! You couldn’t solve example 521 using most pockets calculators and the mathematical tools you have at
your disposal (unless you were really clever!). Later in this chapter we will see how to solve this problem using
logarithms.

Homework

C.3.1 Problem Find the 17-th term of the geometric sequence

−
2
317

,
2
316

, −
2
315

, · · · .

C.3.2 Problem The 6-th term of a geometric progression is 20 and
the 10-th is 320. Find the absolute value of its third term.

C.3.3 Problem Find the sum of the following geometric series.
1.

1+3+32 +33+ · · ·+349.

2. If y '= 1,
1+y+y2 +y3+ · · ·+y100.

3. If y '= 1,

1−y+y2−y3+y4−y5+ · · ·−y99+y100.

4. If y '= 1,
1+y2+y4+y6+ · · ·+y100.

C.3.4 Problem A colony of amoebas8 is put in a glass at 2 : 00
PM. One second later each amoeba divides in two. The next second,
the present generation divides in two again, etc.. After one minute,
the glass is full. When was the glass half-full?

C.3.5 Problem Without using a calculator: which number is
greater 230 or 302?

C.3.6 Problem In this problem you may use a calculator. Legend
says that the inventor of the game of chess asked the Emperor of
China to place a grain of wheat on the first square of the chessboard,
2 on the second square, 4 on the third square, 8 on the fourth square,
etc.. (1) How many grains of wheat are to be put on the last (64-th)
square?, (2) How many grains, total, are needed in order to satisfy
the greedy inventor?, (3) Given that 15 grains of wheat weigh
approximately one gramme, what is the approximate weight, in kg,
of wheat needed?, (4) Given that the annual production of wheat is
350 million tonnes, how many years, approximately, are needed in
order to satisfy the inventor (assume that production of wheat stays
constant)9.

C.3.7 Problem Prove that

1+2 ·5+3 ·52 +4 ·53 + · · ·+99 ·5100 =
99 ·5101

4
−
5101−1
16

.

C.3.8 Problem Shew that

1+x+x2+· · ·+x1023 =(1+x)(1+x2)(1+x4) · · ·(1+x256)(1+x512).

C.3.9 Problem Prove that

1+x+x2+· · ·+x80 =(x54+x27+1)(x18+x9+1)(x6+x3+1)(x2+x+1).

8Why are amoebas bad mathematicians? Because they divide to multiply!
9 Depending on your ethnic preference, the ruler in this problem might be an Indian maharajah or a Persian shah, but never an American businessman!!!
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C.4 Infinite Geometric Series
522 Definition Let

sn = a+ar+ar2+ · · ·+arn−1

be the sequence of partial sums of a geometric progression. We say that the infinite geometric sum

a+ar+ar2+ · · ·+arn−1+arn+ · · ·

converges to a finite number s if |sn− s|→ 0 as n→+∞.We say that infinite sum

a+ar+ar2+ · · ·+arn−1+arn+ · · ·

diverges if there is no finite number to which the sequence of partial sums converges.

523 Lemma If 0< a< 1 then an→ 0 as n→ 0.

Proof: Observe that by multiplying through by a we obtain

0< a< 1 =⇒ 0< a2 < a =⇒ 0< a3 < a2 =⇒ . . .

and so
0< .. . < an < an−1 < .. . < a3 < a2 < a< 1,

that is, the sequence is decreasing and bounded. By Theorem 515 the sequence converges to its infimum
infn≥0 an = 0. ❑

524 Theorem Let a, ar, ar2, . . . with |r| '= 1, be a geometric progression. Then

1. The sum of its first n terms is
a+ar+ar2+ · · ·+arn−1 =

a−arn

1− r
,

2. If |r| < 1, the infinite sum converges to
a+ar+ar2+ · · · =

a
1− r

,

3. If |r| > 1, the infinite sum diverges.

Proof: Put
S = a+ar+ar2+ · · ·+arn−1.

Then
rS = ar+ar2+ar3+ · · ·+arn.

Subtracting,
S− rS= S(1− r) = a−arn.

Since |r| '= 1 we may divide both sides of the preceding equality in order to obtain

S =
a−arn

1− r
,

proving the first statement of the theorem.
Now, if |r| < 1, then |r|n→ 0 as n→+∞ by virtue of Lemma 523, and if |r| > 1, then |r|n→+∞ as n→+∞.
The second and third statements of the theorem follow from this. ❑

! We have thus created a dichotomy amongst infinite geometric sums. If their common ratio is smaller than 1
in absolute value, the infinite geometric sum converges. Otherwise, the sum diverges.
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525 Example Find the sum of the infinite geometric series

3
53
−
3
54

+
3
55
−
3
56

+ · · · .

Solution: " We have a= 3
53 ,r =− 15 in Theorem 524. Therefore

3
53
−
3
54

+
3
55
−
3
56

+ · · ·=
3
53

1−
(

− 15
) =

1
50

.

#

526 Example Find the rational number which is equivalent to the repeating decimal 0.2345.

Solution: "

0.2345=
23
102

+
45
104

+
45
106

+ · · · =
23
102

+
45
104

1− 1
102

=
23
100

+
1
220

=
129
550

.

#

! The geometric series above did not start till the second term of the sum.

527 Example A celestial camel is originally at the point (0,0) on the Cartesian Plane. The camel is told by a Djinn that if it
wanders 1 unit right, 1/2 unit up, 1/4 unit left, 1/8 unit down, 1/16 unit right, and so, ad infinitum, then it will find a houris.
What are the coordinate points of the houris?

Solution: " Let the coordinates of the houris be (X ,Y ). Then

X =
1
4

+
1
42
−
1
43

+ · · · =
1

1−
(

− 14
) =

4
5
,

and

Y =
1
2
−
1
23

+
1
25
−
1
27

· · · =
1
2

1−
(

− 14
) =

2
5
.

#

528 Example What is wrong with the statement

1+2+22+23+ · · · =
1

1−2
=−1?

Notice that the sinistral side is positive and the dextral side is negative.

Solution: " The geometric sum diverges, as the common ratio 2 is > 1, so we may not apply the formula for an
infinite geometric sum. There is an interpretation (called convergence in the sense of Abel), where statements
like the one above do make sense. #

Homework

C.4.1 Problem Find the sum of the given infinite geometric series.

1.
8
5

+1+
5
8

+ · · ·

2.
0.9+0.03+0.001+ · · ·

3.
3+2

√
2

3−2
√
2

+1+
3−2

√
2

3+2
√
2

+ · · ·

4. √
3√
2

+

√
2
3

+
2
√
2

9
√
3

+ · · ·
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5.

1+

√
5−1
2

+

(√
5−1
2

)2

+ · · ·

6.
1+10+102 +103+ · · ·

7.
1−x+x2−x3+ · · · , |x| < 1.

8. √
3√

3+1
+

√
3√

3+3
+ · · ·

9.

x−y+
y2

x
−
y3

x2
+
y4

x3
−
y5

x4
+ · · · ,

with |y| < |x|.

C.4.2 Problem Give rational numbers (that is, the quotient of two
integers), equivalent to the repeating decimals below.

1. 0.3

2. 0.6

3. 0.25

4. 2.1235

5. 0.428571

C.4.3 Problem Give an example of an infinite series with all
positive terms, adding to 666.



D Old Exam Questions

D.1 Multiple-Choice

D.1.1 Real Numbers
1. The infinite repeating decimal 0.102102 . . . = 0.102 as a quotient of two integers is

A
15019
147098

B
34
333

C
51
500

D
101
999

E none of these

2. Express the infinite repeating decimal 0.424242 . . . = 0.42 as a fraction.
A

21
50

B
14
33

C
7
15

D
14
333

E none of these

3. Write the infinite repeating decimal as a fraction: 0.121212 . . . = 0.12.
A

4
33

B
3
25

C
1
2

D
102
333

E none of these

4. Let a ∈Q and b ∈ R\Q. How many of the following are necessarily irrational numbers?

I : a+b, II : ab, III : 1+a+b, IV : 1+a2+b2

A exactly one B exactly two C exactly three D all four E none

5. Let a ∈ Z. How many of the following are necessarily true?

I :
√

|a| ∈ R\Q, II :
√
a2 ∈ Z, III :

a
1+ |a|

∈Q, IV :
√

1+a2 ∈ R\Q

A exactly one B exactly two C exactly three D all four E none

D.1.2 Sets on the Line

6. ]−3;2[ ∩ [1;3] =
A ]−3;1[ B ]−3;1] C [1;2[ D ]−3;3] E none of these

7. Determine the set of all real numbers x satisfying the inequality
x+2
x−1

< 1.

A ]1;+∞[ B ]−2;1[ C ]−∞;1[ D ]−∞;1] E none of these

8. ]−3;8] ∩ [−8;−3[ =.
A {−3} B ∅ C ]−8;8] D ]−8;8[ E none of these

9. Write as a single interval: ]−2;4]∪ [1;5[.

A ]−2;1[ B ]1;4[ C ]−2;5[ D [1;4] E none of these

10. Write as a single interval the following interval difference: ]−5;2[ \ [−3;3].
A ]−5;−3[ B [−5;−3[ C [−5;−3] D ]−5;−3] E none of these

211
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11. If
x+1

x(x−1)
≥ 0 then x ∈

A ]−∞;0]∪ [1;+∞[

B [−1;0[∪ ]1;+∞[

C [−1;1[∪ ]1;+∞[

D ]−∞;0[∪ ]0;1[

E none of these

12. If
3

x−1
−
1
x
≤
1
x
then x ∈

A ]−∞;−2]∪ ]0;1[ B ]−2;1[ C [−2;0[∪ ]1;+∞[ D ]−∞;+∞[ E none of these

D.1.3 Absolute Values

Situation: Consider the absolute value expression |x+2|+ |x|− x. Problems 13 through 17 refer to it.

13. Write |x+2|+ |x|− x without absolute values in the interval ]−∞;−2].
A −x−2 B x+2 C −3x−2 D 2− x E none of these

14. Write |x+2|+ |x|− x without absolute values in the interval [−2;0].
A −x−2 B x+2 C −3x−2 D 2− x E none of these

15. Write |x+2|+ |x|− x without absolute values in the interval [0;+∞[.
A −x−2 B x+2 C −3x−2 D 2− x E none of these

16. If |x+2|+ |x|− x= 2, then x ∈

A ∅ B {−2} C [−2;0] D {0} E none of these

17. If |x+2|+ |x|− x= 3, then x ∈

A {0,1} B {−1,0} C [−1;1] D {−1,1} E none of these

18. ||
√
2−2|−2|=

A
√
2 B

√
2−4 C 4−

√
2 D 1+

√
2 E none of these

19. If |x+1|= 4 then
A x ∈ {−5,3} B x ∈ {−4,4} C x ∈ {−3,5} D x ∈ {−5,5} E none of these

20. If −1< x< 1 then |x+1|− |x−1|=
A 2 B −2 C 2x D −2x E none of these

21. The set {x ∈ R : |x+1|< 4} is which of the following intervals?
A ]−4;4[ B ]−5;3[ C ]−3;5[ D ]−1;4[ E none of these

22. If |x2−2x|= 1 then
A x ∈ {1−

√
2,1+

√
2,2}

B x ∈ {1−
√
2,1+

√
2,−1}

C x ∈ {−
√
2,
√
2}

D x ∈ {1−
√
2,1+

√
2,1}

E none of these
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Situation: Consider the absolute value expression |x|+ |x−2|. Problems 23 through 24 refer to it.

23. Which of the following assertions is true?

A |x|+ |x−2|=

















2x−2 if x ∈]−∞;0]

2 if x ∈ [0;2]

−2x+2 if x ∈ [2;+∞[

B |x|+ |x−2|=


















−2x+2 if x ∈]−∞;0]

2 if x ∈ [0;2]

2x−2 if x ∈ [2;+∞[

C |x|+ |x−2|=


















−2x+2 if x ∈]−∞;−2]

2 if x ∈ [−2;0]

2x−2 if x ∈ [0;+∞[

D |x|+ |x−2|=



















−2x+2 if x ∈]−∞;0]

−2 if x ∈ [0;2]

2x−2 if x ∈ [2;+∞[

E none of these

24. If |x|+ |x−2|= 3, then x ∈

A ∅ B [0;2] C
{
1
2
,−
5
2

}

D
{

−
1
2
,
5
2

}

E none of these

D.1.4 Sets on the Plane.

25. Find the distance between (1,−1) and (−1,1).
A 0 B

√
2 C 2 D 2

√
2 E none of these

26. Find the distance between (a,−a) and (1,1).
A

√

2(1−a)2 B
√

(1−a)2+(1+a)2 C 2
√

(1−a)2 D a
√
2+2 E none of these

27. What is the distance between the points (a,b) and (−a,−b)?
A 0 B

√
a2+b2 C

√
2a2+2b2 D 2

√
a2+b2 E none of these
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28. Which one of the following graphs best represents the set

{(x,y) ∈ R2 : x2+ y2 ≤ 4, x2 ≥ 1} ?

Notice that there are four graphs, but five choices.

Figure D.1: A Figure D.2: B Figure D.3: C Figure D.4: D

A A B B C C D D E none of these

29. Which one of the following graphs best represents the set

{(x,y) ∈R2 : x2+ y2 ≥ 1, (x−1)2+ y2 ≤ 1} ?

Notice that there are four graphs, but five choices.

Figure D.5: A Figure D.6: B Figure D.7: C Figure D.8: D

A A B B C C D D E none of these
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30. Which one of the following graphs best represents the set

{(x,y) ∈ R2 : x2+ y2 ≤ 16, y≥−x} ?

Notice that there are four graphs, but five choices.

Figure D.9: A Figure D.10: B Figure D.11: C Figure D.12: D

A A B B C C D D E none of these

31. Which of the following graphs represents the set

{(x,y) ∈ R2 : x2+ y2 ≤ 4, |x|≥ 1}?

Figure D.13: A Figure D.14: B Figure D.15: C Figure D.16: D

A A B B C C D D E none of these
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32. Which of the following graphs represents the set

{(x,y) ∈R2 : 0≤ x≤ 2, 3≤ y≤ 4}?

Figure D.17: A Figure D.18: B Figure D.19: C Figure D.20: D

A A B B C C D D E none of these

D.1.5 Lines

33. The lines with equations ax+by= c and dx+ ey= f are perpendicular, where a,b,c,d,e, f are non-zero constants.
Which of the following must be true?
A ad−be= 0 B ad+be=−1 C ae+bd =−1 D ae+bd = 0 E ad+be= 0

34. If a,b are non-zero real constants, find the equation of the line passing through (a,b) and parallel to the line
L :

x
a
−
y
b

= 1.

A y=
b
a
x−a B y=−

a
b
x−b C y=

a
b
x+a D y=

b
a
x E none of these

35. If a,b are non-zero real constants, find the equation of the line passing through (a,b) and perpendicular to the line
L :

x
a
−
y
b

= 1.

A y=−
a
b
x+b+

a2

b
B y=−

a
b
x−b C y=

a
b
x+a D y=

b
a
x+a E none of these

36. If the points (1,1), (2,3), and (4,a) are on the same line, find the value of a.
A 7 B −7 C 6 D 2 E none of these

37. If the lines L : ax−2y= c and L′ : by− x= a are parallel, then
A

a
2

=
1
b

B
a
2

=−
1
b

C
a
2

= b D
a
2

=−b E none of these

38. If the lines L : ax−2y= c and L′ : by− x= a are perpendicular, then
A

a
2

=
1
b

B
a
2

=−
1
b

C
a
2

= b D
a
2

=−b E none of these

39. Find the equation of the line parallel to y= mx+ k and passing through (1,1).
A y= mx+1 B y= mx+1−m C y= mx+m−1 D y= mx E none of these
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40. Find the equation of the line perpendicular to y= mx+ k and passing through (1,1).

A y=−
x
m
−1+

1
m

B y=−
x
m

+1+
1
m

C y=−
x
m

+1−
1
m

D y=−
x
m
−1−

1
m

E none of these

Problems 41 through 44 refer to the two points (a,−a) and (1,1).

41. Find the slope of the line joining (a,−a) and (1,1).

A
1−a
1+a

B
1+a
1−a

C
1+a
a−1

D −1 E none of these

42. Find the equation of the line passing through (a,−a) and (1,1).

A y=

(
1+a
1−a

)

x+
2a
1−a

B y=

(
1+a
1−a

)

x

C y=

(
1+a
1−a

)

x+
2a
a−1

D y=

(
a−1
a+1

)

x

E none of these

43. Find the equation of the line passing through (0,0) and parallel to the line passing through (a,−a) and (1,1).

A y=

(
1+a
1−a

)

x+
2a
1−a

B y=

(
1+a
1−a

)

x

C y=

(
1+a
1−a

)

x+
2a
a−1

D y=

(
a−1
a+1

)

x

E none of these

44. Find the equation of the line passing through (0,0) and perpendicular to the line passing through (a,−a) and (1,1).

A y=

(
1−a
1+a

)

x

B y=

(
1+a
1−a

)

x

C y=

(
1+a
1−a

)

x+
2a
a−1

D y=

(
a−1
a+1

)

x

E none of these

Problems 45 through 48 refer to the following. For a given real parameter u, consider the family of lines Lu given by

Lu : (u+1)y+(u−2)x= u.

45. For which value of u is Lu horizontal?
A u=−1 B u= 2 C u=

1
3

D u=
2
3

E none of these
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46. For which value of u is Lu vertical?
A u=−1 B u= 2 C u=

1
3

D u=
2
3

E none of these

47. For which value of u is Lu parallel to the line y= 2x−1?
A u= 0 B u= 2 C u= 5 D u=

2
3

E none of these

48. For which value of u is Lu perpendicular to the line y= 2x−1?
A u=−5 B u= 0 C u=−

1
2

D u= 5 E none of these

For a real number parameter u consider the line Lu given by the equation

Lu : (u−2)y= (u+1)x+u.

Questions 49 to 54 refer to Lu.

49. For which value of u does Lu pass through the point (−1,1)?

A) 1 B) −1 C) 2 D) 3 E) none of these

50. For which value of u is Lu parallel to the x-axis?

A) −2 B) 2 C) −1 D) 1 E) none of these

51. For which value of u is Lu parallel to the y-axis?

A) −2 B) 2 C) −1 D) 1 E) none of these

52. For which value of u is Lu parallel to the line 2x− y= 2?

A) 5 B) 0 C) −3 D)
1
3

E) none of these

53. For which value of u is Lu perpendicular to the line 2x− y= 2?

A) 5 B) 0 C)
1
3

D) −
1
3

E) none of these

54. Which of the following points is on every line Lu regardless the value of u?

A) (−1,2) B) (2,−1) C) ( 13 ,−
2
3) D) (− 23 ,

1
3) E) none of these
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D.1.6 Absolute Value Curves

Situation: Problems 55 and 56 refer to the curve y= |x−2|+ |x+1|.

55. Write y= |x−2|+ |x+1|without absolute values.

A y=

















−2x+1 if x≤−1

3 if −1≤ x≤ 2

2x−1 if x≥ 2

B y=



















−2x+3 if x≤−1

1 if −1≤ x≤ 2

2x−3 if x≥ 2

C y=

















−2x−3 if x≤−1

3 if −1≤ x≤ 2

2x+3 if x≥ 2

D y=


















−2x−3 if x≤−1

1 if −1≤ x≤ 2

2x+3 if x≥ 2

E none of these

56. Which graph most resembles the curve y= |x−2|+ |x+1|?

Figure D.21: A Figure D.22: B Figure D.23: C Figure D.24: D

A B C D E none of these
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57. Which graph most resembles the curve y= |x−2|− |x+1|?

Figure D.25: A Figure D.26: B Figure D.27: C Figure D.28: D

A B C D E none of these

D.1.7 Circles and Semicircles

58. The point A(1,2) lies on the circle C : (x+1)2+(y−1)2 = 5. Which of the following points is diametrically opposite
to A on C ?

A (−1,−2) B (−3,0) C (0,3) D (0,
√
5+1) E none of these

59. A circle has a diameter with endpoints at (−2,3) and (6,5). Find its equation.

A (x+2)2+(y−3)2 = 68

B (x−4)2+(y−8)2 = 61

C (x−2)2+(y−4)2 = 17

D (x−2)2+(y−4)2 =
√
17

E none of these

60. Which figure represents the circle with equation

x2−2x+ y2+6y=−6 ?

Again, notice that there are four figures, but five choices.

Figure D.29: A Figure D.30: B Figure D.31: C Figure D.32: D

A A B B C C D D E none of these
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61. Which figure represents the semicircle with equation

x= 1−
√

−y2−6y−5?

Again, notice that there are four figures, but five choices.

Figure D.33: A Figure D.34: B Figure D.35: C Figure D.36: D

A A B B C C D D E none of these

62. Find the equation of the circle with centre at (−1,2) and passing through (0,1).
A (x−1)2+(y+2)2 = 10

B (x+1)2+(y−2)2 = 2

C (x+1)2+(y−2)2 = 10

D (x−1)2+(y+2)2 = 2

E none of these

63. Let a and b be real constants. Find the centre and the radius of the circle with equation

x2+2ax+ y2−4by= 1.

A Centre: (−a,2b), Radius:
√
a2+4b2

B Centre: (a,2b), Radius:
√
1+a2+4b2

C Centre: (a,−2b), Radius:
√
1+a2+4b2

D Centre: (−a,2b), Radius:
√
1+a2+4b2

E none of these

64. A circle has a diameter with endpoints A(b,−a) and B(−b,a). Find its equation.
A (x−b)2+(y+a)2 = a2+b2

B (x−b)2+(y−a)2 = a2+b2

C x2+ y2 = a2+b2

D x2+ y2 =
√
a2+b2

E none of these
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65. Find the centreC and the radius R of the circle with equation x2+ y2 = 2ax−b.
A C(0,0),R=

√
2a−b

B C
(

a,−
b
2

)

,R=
√

a2+ b2
4

C C(−a,0),R=
√
a2−b

D C(a,0),R=
√
a2−b

E none of these

D.1.8 Functions: Definition

66. Which one of the the following represents a function?

Figure D.37: A Figure D.38: B Figure D.39: C Figure D.40: D

A A B B C C D D E none of these

67. How many functions are there from the set {a,b,c} to the set {1,2}?
A 9 B 8 C 6 D 1 E none of these

D.1.9 Evaluation of Formulæ

Figure D.41 shews a functional curve y= f (x), and refers to problems 68 to 71.

Figure D.41: Problems 68 to 71.

68. The domain of the functional curve in figure D.41 is
A [−5;5] B [−5;−1[∪]2;5] C [−5;−1]∪ [2;5] D [−5;−1[∪[2;5[ E none of these
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69. The image of the functional curve in figure D.41 is
A [−5;5] B [−5;−3]∪]2;5] C [−5;−3[∪]2;5[ D [−5;−3[∪]2;5[ E none of these

70. f (3) =

A 1 B 2 C 3 D 5 E none of these

71. f is
A an even function B increasing C an odd function D decreasing E none of these

Problems 72 through 72 refer to the functional curve in figure D.42.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

Figure D.42: Problems 72 through 72.

72. The domain of the function f is
A [−7;5] B [−7;−2[∪]−2;5] (C) ]−7;5[ (D) ]−7;5] (E) none of these

73. The image of the function f is
A [−3;4] B [−3;4]\{2} C [−3;5] (D) [−3;2[∪]2;5] ( E none of these

74. f (2) =

A 2 B 3 C 4 D 5 E none of these

75. f (−2) =

A 2 B 3 C 5 D undefined E none of these

76. Let f (x) = 1+ x+ x2. What is f (0)+ f (1)+ f (2)?
A 10 B 11 C 7 D 3 E none of these

77. Let f :R→ R with the assignment rule x "→ (x− (x− (x−1)2)2)2. Find f (2).
A 1 B 4 C 16 D 0 E none of these

78. Let f (x) =
x−1
x+1

. Find f (2).

A 0 B
1
3

C
2
3

D
1
2

E none of these

79. Consider a function f :R→R such that f
( x
3

)

= 9x. Find f (x).

A 3x B
x
3

C
x
9

D 27x E none of these
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80. Consider f (x) =
1
x
, for x '= 0. How many of the following assertions are necessarily true?

I : f (ab) = f (a) f (b), II : f
(a
b

)

=
f (a)
f (b)

, III : f (a+b) = f (a)+ f (b), IV : f
(
1
a

)

=
1
f (a)

A exactly one B exactly two C exactly three D all four E none of them

D.1.10 Algebra of Functions

81. Let f (x) = 2x+1. Find ( f ◦ f ◦ f )(1).

A 8 B 3 C 9 D 15 E none of these

82. Let f (x) = x−2 and g(x) = 2x+1. Find
( f ◦ g)(1)+ (g ◦ f )(1).

A −1 B 1 C 0 D 2 E none of these

83. Let f :R→ R be such that f (2x−1) = x+1. Find f (−3).
A −2 B 1 C −1 D 0 E none of these

84. Let f (x) = x+1. What is ( f ◦ · · ·◦ f )
︸ ︷︷ ︸

100 f ′s

(x)?

A x+100 B x100+1 C x100+100 D x+99 E none of these

85. Let f :R→ R satisfy f (1− x) = x−2. Find f (x).
A −1− x B x+1 C x−1 D 1− x E none of these

Questions 86 through 90 refer to the assignment rules given by f (x) =
x

x−1
and g(x) = 1− x.

86. Determine ( f ◦ g)(2).

A 0 B −2 C −1 D
1
2

E none of these

87. Determine (g ◦ f )(2).

A 0 B −2 C −1 D
1
2

E none of these

88. Determine (g f )(2).

A 0 B −2 C −1 D
1
2

E none of these

89. Determine (g+ f )(2).

A 1 B −2 C −1 D
1
2

E none of these

90. If ( f +g)(x) = (g ◦ f )(x) then x ∈
A {−1,1} B {−3,0} C {−3,3} D {0,3} E none of these

Problems 97 through 101 refer to the functions f and g with

f (x) =
2

2− x
, g(x) =

x−2
x−1

, h(x) =
2x−2
x

.

91. f (−1) =

A 4 B
2
3

C 1 D
3
2

E none of these
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92. Find ( f gh)(−1).

A
37
6

B
2
3

C
3
2

D 4 E none of these

93. Find ( f +g+h)(−1).

A
37
6

B
2
3

C
3
2

D 4 E none of these

94. ( f ◦ g)(x) =

A f (x) B g(x) C h(x) D x E none of these

95. (g ◦ h)(x) =

A f (x) B g(x) C h(x) D x E none of these

96. (h ◦ f )(x) =

A f (x) B g(x) C h(x) D x E none of these

Problems 97 through 101 refer to the functions f and g with f (x) =
√
x2+1 and g(x) =

√
x2−1.

97. Find ( f g)(2).
A 4 B 2 C

√
5+
√
3 D

√
15 E none of these

98. Find ( f +g)(2).
A 4 B 2 C

√
5+
√
3 D

√
15 E none of these

99. Find ( f ◦ g)(2).
A 4 B 2 C

√
5+
√
3 D

√
15 E none of these

100. Find (g ◦ f )(2).
A 4 B 2 C

√
5+
√
3 D

√
15 E none of these

101. Find (g ◦ f ◦ g ◦ f ◦ g ◦ f ◦ g ◦ f )(2).
A 4 B 2 C

√
3 D

√
5 E none of these

102. A function f : R→ R satisfies f (2x) = x2. Find ( f ◦ f )(x).

A x4 B
x4

4
C

x4

16
D

x4

64
E none of these

D.1.11 Domain of Definition of a Formula

103. What is the natural domain of definition of the assignment rule x "→
√
x2−1
|x|−1

?

A [−1;1] B ]−∞;−1]∪ [1;+∞[ C ]−∞;−1[∪]1;+∞[ D R\{±1} E none of these

104. What is the natural domain of definition of the assignment rule x "→
√
x−2

x3−8
?

A ]2;+∞[ B R\{2} C ]−∞;−2[ D [2;+∞[ E none of these
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Questions 105 through 108 are related.

105. Consider the assignment rule x "→
1+ x
1− x

. Find its domain of definition.

A R\{1}

B [−1;1[

C R\{−1,1}

D R\{−1}

E none of these

106. Consider the assignment rule x "→
√

1+ x
1− x

. Find its domain of definition.

A ]−∞;−1[ ∪ ]1;+∞[

B [−1;1[

C ]−∞;−1] ∪ ]1;+∞[

D [−1;1]

E none of these

107. Consider the assignment rule x "→
√
1+ x+

√
1− x. Find its domain of definition.

A ]−∞;−1[ ∪ ]1;+∞[

B [−1;1[

C ]−∞;−1] ∪ ]1;+∞[

D [−1;1]

E none of these

108. Consider the assignment rule x "→
√

1+ x
1− x

−1. Find its domain of definition.

A ]0;1[

B [0;1]

C [−1;1[

D [0;1[

E none of these

109. What is the domain of definition of the formula x "→
√
1− x2 ?

A [−1;1] B ]−∞;−1] C ]−∞;1] D [1;+∞[ E none of these

110. Find the natural domain of definition of x "→
√
−x+

√
1+ x.

A [−1;0] B [0;1] C [−1;1] D R\ [−1;1] E none of these

111. Find the natural domain of definition of x "→
√

x
x2− x−6

.

A [−2;3] B [−2;0[∪[3;+∞[ C ]−2;0]∪]3;+∞[ D ]−3;+∞[ E none of these



Multiple-Choice 227

D.1.12 Piecewise-defined Functions

112. Which one most resembles the graph of y= f (x) =

















1
x

+1 if x ∈]−∞;−1]

1− x2 if x ∈]−1;1[

1
x
−1 [1;+∞[

?

Figure D.43: A Figure D.44: B Figure D.45: C Figure D.46: D

A A B B C C D D E none of these

113. Which one most resembles the graph of y= f (x) =

















(x+3)2−5 if x ∈]−∞;−1]

x3 if x ∈]−1;1[

5− (x−3)2 [1;+∞[

?

Figure D.47: A Figure D.48: B Figure D.49: C Figure D.50: D

A A B B C C D D E none of these

D.1.13 Parity of Functions

114. Which one of the following functions f : R→ R with the assignment rules given below, represents an even function?
A f (x) = x |x| B f (x) =

∣
∣x− x2

∣
∣ C f (x) = x2− x4+1− x D f (x) = |x|3 E none of these

115. How many of the following are assignment rules of even functions?

I : a(x) = |x|3, II : b(x) = x2|x|, III : c(x) = x3− x, IV : d(x) = |x+1|

A exactly one B exactly two C exactly three D all four E none
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116. Let f be an odd function and let g be an even function, both with the same domain. How many of the following
functions are necessarily even?

I : x "→ f (x)g(x) II : x "→ f (x)+g(x) III : x "→ ( f (x))2+(g(x))2 IV : x "→ f (x)|g(x)|

A exactly one B exactly two C exactly three D all four E none of them

117. Let f be an even function and let g be an odd function, with f (2) = 3 and g(2) = 5. Find the value of
f (−2)+g(−2)+ ( f g)(−2).
A −17 B 23 C 13 D 7 E none of these

118. Let f be an even function and let g be an odd function, both defined over all reals. How many of the following
functions are necessarily even?

I : x "→ ( f +g)(x) II : x "→ ( f ◦ g)(x) III : x "→ (g ◦ f )(x) IV : x "→ | f (x)|+ |g(x)|

A none B exactly one C exactly two D exactly three E all four

119. Let f be an odd function defined over all real numbers. How many of the following are necessarily even?

I : 2 f ; II : | f |; III : f 2; IV : f ◦ f .

A Exactly one B Exactly two C Exactly three D All four E none is even

120. Let f be an odd function such that f (−a) = b and let g be an even function such that g(c) = a. What is ( f ◦ g)(−c)?
A b B −b C −a D a E none of these

D.1.14 Transformations of Graphs

121. The curve y=
x−1
x+1

experiences the following successive transformations: (1) a reflexion about the y axis, (2) a
translation 1 unit down, (3) a reflexion about the x-axis. Find the equation of the resulting curve.
A y=

2
1− x

B y=
x

2− x
C y=

2
x−1

D y=
x−2
x

E none of these

122. What is the equation of the resulting curve after y= x2− x has been, successively, translated one unit up and reflected
about the y-axis?
A y= x2− x+1 B y= x2+ x+1 C y=−x2+ x−1 D y= (x+1)2− x−1 E none of these

123. What is the equation of the curve symmetric to the curve y=
1
x3

+1 with respect to the line y= 0 ?

A y=−
1
x3

+1 B y=−
1
x3
−1 C y=

1
(x−1)3

D y=
1

(x−1)1/3
E y=

1
(1− x)1/3

124. What is the equation of the resulting curve after the curve y= x|x+1| has been successively translated one unit right
and reflected about the y-axis?
A y= (x−1)|x| B y=−(x+1)|x| C y=−x|x| D y=−x|x|−1 E none of these

125. The curve y= |x|+ x undergoes the following successive transformations: (1) a translation 1 unit down, (2) a reflexion
about the y-axis, (3) a translation 2 units right. Find the equation of the resulting curve.
A y= |x−2|− x+1 B y= |x−2|− x−1 C y= |x+2|− x−3 D y= |x−2|+ x−1 E none of these
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There are six graphs shewn below. The first graph is that of the original curve y= f (x), and the other five are various
transformations of the original graph. You are to match each graph letter below with the appropriate equation in 126
through 130 below.

Figure D.51: y= f (x). Figure D.52: A. Figure D.53: B.

Figure D.54: C. Figure D.55: D. Figure D.56: E.

126. y= f (−x) is
A B C D E

127. y=− f (x) is
A B C D E

128. y= f (|x|) is
A B C D E

129. y= | f (x)| is
A B C D E

130. y= f (−|x|) is
A B C D E
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There are six graphs shewn below. The first graph is that of the original curve f : R→ R, where f (x) = 3√x, and the
other five are various transformations of the original graph. You are to match each graph letter below with the
appropriate equation in 131 through 135 below.

Figure D.57: y= f (x). Figure D.58: A. Figure D.59: B.

Figure D.60: C. Figure D.61: D. Figure D.62: E.

131. y= f (x)+1 is
A B C D E

132. y= f−1(x) is
A B C D E

133. y=− f (x)+1 is
A B C D E

134. y= | f (x)| is
A B C D E

135. y= f (−x) is
A B C D E
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D.1.15 Quadratic Functions

136. Find the vertex of the parabola with equation y= x2−6x+1.
A (3,10) B (−3,10) C (−3,−8) D (3,−8) E none of these

137. Find the equation of the parabola whose axis of symmetry is parallel to the y-axis, passes through (2,1), and has vertex
at (−1,2).
A x= 3(y−2)2−1

B y=−9(x+1)2+2

C y=−(x−1)2+2

D y=−
1
9
(x+1)2+2

E none of these

138. Let a,b,c be real constants. Find the vertex of the parabola y= cx2+2bx+a.

A
(

−
b
2c

,a−
3b2

4c

)

B
(

−
b
c
,a−

b2

c

)

C
(

−
b
c
,a+

b2

c

)

D
(
b
c
,a+3

b2

c

)

E none of these

139. A parabola has vertex at (1,2), symmetry axis parallel to the x-axis, and passes through (−1,0). Find its equation.

A x=−
(y−2)2

2
+1

B x=−2(y−2)2+1

C y=−
(x−1)2

2
+2

D y=−2(x−1)2+2

E none of these

140. The graph in figure D.63 below belongs to a curve with equation of the form y= A(x+1)2+4. Find A.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure D.63: Problem 144.

A A=
1
2

B A=−1 C A=−
1
2

D A=−2 E none of these
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Problems 141 through 143 refer to the quadratic function q : R→R with assignment rule given by

q(x) = x2−6x+5.

141. How many of the following assertions is (are) true?

(a) q is convex.
(b) q is invertible over R.
(c) the graph q has vertex (−3,−4).
(d) the graph of q has y-intercept (0,5) and x-intercepts (−1,0) and (5,0).

A none B exactly one C exactly two D exactly three E all four

142. Which one most resembles the graph of q? Notice that there are four graphs but five choices.

Figure D.64: A Figure D.65: B Figure D.66: C Figure D.67: D

A A B B C C D D E none of these

143. Which one most resembles the graph of y= q(|x|)? Notice that there are four graphs but five choices.

Figure D.68: A Figure D.69: B Figure D.70: C Figure D.71: D

A A B B C C D D E none of these
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144. Find the equation of the parabola shewn below. You may assume that the points marked with a dot have integer
coordinates.

1

2

3

4

-1

-2

-3

-4

-5

-6

1 2 3 4-1-2-3-4-5-6

Figure D.72: Problem 144.

A y=−
−(x+2)2

2
+1

B y=−2(x+2)2+1

C y= (x+2)2+1

D y=−(x+2)2+1

E none of these

D.1.16 Injections and Surjections

145. How many injective functions are there from the set {a,b,c} to the set {1,2}?
A 6 B 9 C 8 D 0 E none of these

146. How many surjective functions are there from the set {a,b,c} to the set {1,2}?
A 0 B 6 C 9 D 8 E none of these

147. How many invertible functions are there from the set {a,b,c} to the set {1,2}?
A 0 B 6 C 9 D 8 E none of these

D.1.17 Inversion of Functions

148. What is the equation of the curve symmetric to the curve y=
1
x3

+1 with respect to the line y= x ?

A y=−
1
x3

+1 B y=−
1
x3
−1 C y=

1
(x−1)3

D y=
1

(x−1)1/3
E y=

1
(1− x)1/3
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Figure D.73 shews a functional curve

f : [−5;5]→ [−3;6], y= f (x),

and refers to problems 149 to 153.

x

y

Figure D.73: Problems 149 to 153.

149. f (−2)+ f (2) =

A 0 B 1 C 2 D 3 E none of these

150. f (−3) belongs to the interval
A [−1;0] B [−2;−1] C [−3;−2] D [0;1] E none of these

151. f−1(3) =

A −3 B −
1
3

C 2 D 5 E none of these

152. ( f ◦ f )(2) =

A 4 B 5 C 6 D undefined E none of these

153. The graph of f−1 is

x

y

Figure D.74: A

x

y

Figure D.75: B

x

y

Figure D.76: C

x

y

Figure D.77: D

A A B B C C D D E none of these

154. Let f (x) =
x

x+1
. Find g(x) such that ( f ◦ g)(x) = x.

A g(x) =
x

x−1
B g(x) =

x
1+ x

C g(x) =
x

1− x
D g(x) =−

x
1+ x

E none of these

155. Let f (x) =
x+1
1−2x

. Then f−1(x) =

A
1− x
1+2x

B
1+ x
1−2x

C
x−1
1+2x

D
1− x
1−2x

E none of these
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Problems 156 through 159 refer to the function f with assignment rule

y= f (x) =

















x
3
−
10
3

if x ∈ [−5;−2[

2x if x ∈ [−2;2]

x
3

+
10
3

if x ∈]2;5]

156. Which one most resembles the graph of f ?

Figure D.78: A Figure D.79: B Figure D.80: C Figure D.81: D

A A B B C C D D E none of these

157. Find the exact value of ( f ◦ f )(2).

A 4 B
14
3

C 8 D 3 E none of these

158. Which one could not possibly be a possible value for ( f ◦ · · ·◦ f )
︸ ︷︷ ︸

n compositions

(a), where n is a positive integer and a ∈ [−5;5]?.

A 0 B −5 C 5 D 6 E none of these

159. Which one most resembles the graph of f−1?

Figure D.82: A Figure D.83: B Figure D.84: C Figure D.85: D

A A B B C C D D E none of these

160. Let f (x) = x−2 and g(x) = 2x+1. Find ( f−1 ◦ g−1)(x).

A
x+1
2

B
x+3
2

C 2x−3 D 2x−1 E none of these
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161. Which of the following graphs represents an invertible function?

Figure D.86: A Figure D.87: B Figure D.88: C Figure D.89: D

A A B B C C D D E none of these

162. Let f (x) =
( x
3
−1

)3
+2. Then f−1(x) =

A 3 3√x+2−3 B 3 3√x−2−3 C 3 3√x−2+3 D 3 3√x+2+3 E none of these

163. Let f (x) =
2x
x+1

. Find f−1(x).

A
x+1
2x

B
x

x−2
C

x−2
x

D
x

2− x
E none of these

164. Let f (x) = (x+1)5−2. Find f−1(x).

A 5√x+1−2 B 5√x−2+1 C
1

(x+1)5−2
D 5√x+2−1 E none of these

165. Let f (x) =−
x
2

+1. Find f−1(x).

A
2
x
−1 B −2x−1 C 2x−1 D −2x+2 E none of these

166. Let f (x) =
x

x−1
and g(x) = 1− x. Determine (g ◦ f )−1(x).

A
x−1
x

B
1− x
x

C
1

x−1
D

1
1− x

E none of these

167. Let f (x) =
x+1
x
. Determine f−1(x).

A f−1(x) =
x

x−1

B f−1(x) =
1

x+1

C f−1(x) =
1

x−1

D f−1(x) =
x

x+1

E none of these
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D.1.18 Polynomial Functions

168. Let p be a polynomial of degree 3 with roots at x= 1, x=−1, and x= 2. If p(0) = 4, find p(4).
A 0 B 4 C 30 D 60 E none of these

169. A polynomial of degree 3 satisfies p(0) = 0, p(1) = 0, p(2) = 0, and p(3) =−6. What is p(4)?
A 0 B 1 C −24 D 24 E none of these

170. Factor the polynomial x3− x2−4x+4.
A (x+1)(x−2)(x+2)

B (x−1)(x+1)(x−4)

C (x−1)(x−2)(x+2)

D (x−1)(x+1)(x+4)

E none of these

171. Determine the value of the parameter a so that the polynomial x3+2x2+ax−10 be divisible by x−2.
A a= 3 B a=−3 C a=−2 D a=−1 E none of these

172. A polynomial leaves remainder−1 when divided by x−2 and remainder 2 when divided by x+1. What is its
remainder when divided by x2− x−2?
A x−1 B 2x−1 C −x−1 D −x+1 E none of these

Questions 173 through 176 refer to the polynomial p in figure D.90. The polynomial has degree 5. You may assume
that the points marked with dots have integer coordinates.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Figure D.90: Problems 173 through 176.

173. Determine the value of p(0).
A 0 B −1 C 4 D −2 E none of these

174. Determine the value of p(−3).
A 0 B −1 C 4 D −2 E none of these
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175. Determine p(x).

A
(x−3)(x+2)(x+4)(x−1)2

24

B (x−3)(x+2)(x+4)(x−1)2

C
(x−3)(x+2)(x+4)(x−1)

24

D (x−3)(x+2)(x+4)(x−1)

E none of these

176. Determine the value of (p ◦ p)(−3).
A 4 B 18 C 20 D 24 E none of these

177. The polynomial p whose graph is shewn below has degree 4. You may assume that the points marked below with a dot
through which the polynomial passes have have integer coordinates. Find its equation.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

A p(x) = x(x+2)2(x−3)

B p(x) =−
x(x+2)2(x−3)

18

C p(x) =
x(x+2)2(x−3)

12

D p(x) =
x(x+2)2(x−3)

18

E none of these
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Problems 178 through 180 refer to the polynomial in figure D.91, which has degree 4. You may assume that the points
marked below with a dot through which the polynomial passes have have integer coordinates.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-7

-6
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-4

-3

-2

-1
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2

3

4

5

6

7

Figure D.91: Problems 178through 180.

178. Determine p(−1).
A 1 B −1 C 3 D −3 E none of these

179. p(x) =

A x(x+2)2(x−2)

B
x(x−2)2(x+2)

3

C
x(x+2)2(x−2)

3

D x(x+2)(x−2)2

E none of these

180. Determine (p ◦ p)(−1).

A 1 B 3 C −3 D −1 E none of these
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D.1.19 Rational Functions

181. Which graph most resembles the curve y=
1

x−1
+2?

Figure D.92: A Figure D.93: B Figure D.94: C Figure D.95: D

A B C D E none of these

182. Which graph most resembles the curve y=

∣
∣
∣
∣

1
x−1

+2
∣
∣
∣
∣
?

Figure D.96: A Figure D.97: B Figure D.98: C Figure D.99: D

A B C D E none of these

183. Which graph most resembles the curve y=
1

|x|−1
+2?

Figure D.100: A Figure D.101: B Figure D.102: C Figure D.103: D

A B C D E none of these
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Situation: Problems 184 through 188 refer to the rational function f , with f (x) =
x2+ x

x2+ x−2
.

184. As x→+∞, y→
A +

1
2

B −
1
2

C 0 D 1 E none of these

185. The y-intercept of f is located at
A (0,−1) B (0, 12) C (0,1) D (0,0) E none of these

186. Which of the following is true?
A f has zeroes at x= 0 and x=−1, and poles at x= 1 and x=−2.

B f has zeroes at x= 0 and x= 1, and poles at x= 1 and x= 2.

C f has zeroes at x= 0 and x=−1, and poles at x=−1 and x= 2.

D f has no zeroes and no poles

E none of these

187. Which of the following is the sign diagram for f ?

A
]−∞;−2[ ]−2;−1[ ]−1;0[ ]0;1[ ]1;+∞[

B
]−∞;−2[ ]−2;−1[ ]−1;0[ ]0;1[ ]1;+∞[

C
]−∞;−2[ ]−2;−1[ ]−1;0[ ]0;1[ ]1;+∞[

D
]−∞;−2[ ]−2;−1[ ]−1;0[ ]0;1[ ]1;+∞[

E none of these

188. The graph of y= f (x) most resembles

Figure D.104: A Figure D.105: B Figure D.106: C Figure D.107: D

A B C D E none of these
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Situation: Problems ?? through 193 refer to the rational function f , with f (x) =
(x+1)2(x−2)
(x−1)(x+2)2

.

189. As x→+∞, y→
A +

1
2

B −
1
2

C 0 D 1 E none of these

190. The y-intercept of f is located at
A (0,−1) B (0,1) C (0,− 12) D (0, 12 ) E none of these

191. Which of the following is true?
A f has zeroes at x=−1 and x= 2, and poles at x= 1 and x=−2.

B f has zeroes at x= 1 and x=−2, and poles at x=−1 and x= 2.

C f has zeroes at x= 1 and x= 2, and poles at x=−1 and x=−2.

D f has no zeroes and no poles

E none of these

192. Which of the following is the sign diagram for f ?

A
]−∞;−2[ ]−2;−1[ ]−1;1[ ]1;2[ ]2;+∞[

B
]−∞;−2[ ]−2;−1[ ]−1;1[ ]1;2[ ]2;+∞[

C
]−∞;−2[ ]−2;−1[ ]−1;1[ ]1;2[ ]2;+∞[

D
]−∞;−2[ ]−2;−1[ ]−1;1[ ]1;2[ ]2;+∞[

E none of these

193. The graph of y= f (x) most resembles

Figure D.108: A Figure D.109: B Figure D.110: C Figure D.111: D

A B C D E none of these
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Situation: Problems 194 through 196 refer to the rational function f whose graph appears in figure ??. The function f
is of the form

f (x) = K
(x−a)(x−b)2

(x− c)4
,

where K,a,b,c are real constants that you must find. It is known that f (x)→+∞ as x→ 1.

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
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Figure D.112: Problems ?? through ??.

194. Which of the following is true?
A a= 1, b=−1, c= 2

B a=−1, b= 2, c= 1

C a=−1, b= 1, c= 2

D a= 2, b=−1, c= 1

E none of these

195. What is the value of K?

A 10 B 20 C −20 D 1 E none of these

196. As x→+∞, f (x)→

A 0 B 1 C +∞ D −∞ E none of these
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Situation: Problems 197 through 201 refer to the rational function f , with f (x) =
x3

x2−4
.

197. As x→+∞, y→
A +∞ B −∞ C 0 D 1 E none of these

198. As x→−∞, y→
A +∞ B −∞ C 0 D 1 E none of these

199. Where are the poles of f ?
A x= 2 and x=−2 B x=−1 and x=−2 C x= 0 and x= 2 D x= 0 and x=−2 E none of these

200. Which of the following is true?
A x= 0 is the only zero of f

B x=−2 and x= +2 are the only zeroes of f

C x= 0, x= 2, and x=−2 are all zeroes of f

D f has no zeroes

E none of these

201. The graph of y= f (x) most resembles

Figure D.113: A Figure D.114: B Figure D.115: C Figure D.116: D

A B C D E none of these
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Situation: Problems 202 through 206 refer to the rational function f , with f (x) =
(x−1)(x+2)
(x+1)(x−2)

.

202. Which of the following is a horizontal asymptote for f ?
A y=−1 B y= 1 C y= 0 D y= 2 E none of these

203. Where are the poles of f ?
A x= 1 and x=−2 B x=−1 and x=−2 C x=−1 and x= 2 D x= 1 and x= 2 E none of these

204. Where are the zeroes of f ?
A x= 1 and x=−2 B x=−1 and x=−2 C x=−1 and x= 2 D x= 1 and x= 2 E none of these

205. What is the y-intercept of f ?
A (0,1) B (0,2) C (0,−1) D (0,−2) E none of these

206. The graph of y= f (x) most resembles

Figure D.117: A Figure D.118: B Figure D.119: C Figure D.120: D

A B C D E none of these
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D.1.20 Algebraic Functions

207. The graph in figure D.121 below belongs to a curve with equation of the form y= A
√
x+3−2. Find A.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure D.121: Problem 207.

A A=
1
2

B A= 1 C A=−2 D A= 2 E none of these

208. Which one of the following graphs best represents the curve y=−
√
−x?

Figure D.122: A Figure D.123: B Figure D.124: C Figure D.125: D

A A B B C C D D E none of these

209. Which graph most resembles the curve y=−
√
x−1?

Figure D.126: A Figure D.127: B Figure D.128: C Figure D.129: D

A B C D E none of these
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210. Which graph most resembles the curve y=
√
1− x?

Figure D.130: A Figure D.131: B Figure D.132: C Figure D.133: D

A B C D E none of these

Situation: Problems 211 through 214 refer to the assignment rule given by a(x) =

√

x+1
x−1

.

211. What is the domain of definition of a?
A [−1;1[ B [−1;1] C ]−∞;−1]∪ [1;+∞[ D ]−∞;−1]∪ ]1;+∞[ E none of these

212. What is a(2)?

A
√
3 B

1√
3

C
√
2 D undefined E none of these

213. a−1(x) =

A
1− x2

1+ x2
B

(
1+ x
1− x

)2
C

1+ x2

1− x2
D

1+ x2

x2−1
E none of these

214. The graph of a most resembles

Figure D.134: A Figure D.135: B Figure D.136: C Figure D.137: D

A B C D E none of these
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D.1.21 Conics

215. Find the equation of the ellipse in figure D.138.
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Figure D.138: Problem 215.

A (x−2)2+
(y−3)2

16
= 1

B (x+2)2+
(y+3)2

16
= 1

C (x−2)2+
(y−3)2

4
= 1

D (x+2)2+
(y+3)2

4
= 1

E none of these

216. Find the equation of the hyperbola in figure D.139.
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Figure D.139: Problem 216.

A (x−1)2− (y−1)2 = 1

B (x−1)2− (y+1)2 = 1

C (y−1)2− (x−1)2 = 1

D (y+1)2− (x−1)2 = 1

E none of these
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D.1.22 Geometric Series

217. Find the sum of the terms of the infinite geometric progression

1−
1
3

+
1
9
−
1
27

+ · · · .

A
4
3

B
3
4

C
1
4

D
1
3

E none of these

D.1.23 Exponential Functions

218. Which of the following best resembles the graph of the curve y= 2−|x|?

Figure D.140: A Figure D.141: B Figure D.142: C Figure D.143: D

A A B B C C D D E none of these

219. If 3x2 = 81, then

A x ∈ {−4,4} B x ∈ {−9,9} C x ∈ {−2,2} D x ∈ {−3,−3} E none of these

220. If the number 52000 is written out (in decimal notation), how many digits does it have?

A 1397 B 1398 C 1396 D 2000 E none of these
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D.1.24 Logarithmic Functions

221. Which of the following best resembles the graph of the curve y= log1/2 x?

Figure D.144: A Figure D.145: B Figure D.146: C Figure D.147: D

A A B B C C D D E none of these

222. Find the smallest integer n for which the inequality 2n > 4n2+n will be true.
A n= 4 B n= 7 C n= 8 D n= 9 E none of these

223. Solve the equation 9x+3x−6= 0.
A x ∈ {1, log3 2} B x ∈ {log3 2} only C x ∈ {1} only D x ∈ {log2 3, log3 2} E none of these

224. Find the exact value of log3√3 729.

A
1
9

B
1
4

C 9 D 4 E none of these

225. Let a and b be consecutive integers such that a< log5 100< b. Then
A a= 1;b= 2 B a= 2;b= 3 C a= 3;b= 4 D a= 4;b= 5 E none of these

226. Find all real solutions to the equation log2 log3 log2 x= 1.
A x= 512 B x= 81 C x= 256 D x= 12 E none of these

227. Which of the following functions is (are) increasing in its (their) domain of definition?

I : x "→
1
2x
; II : x "→ 2x; III : x "→ log1/2 x.

A I and III only B II only C II and III only D III only E none of these

228. Which of the following assertions is (are) true for all strictly positive real numbers x and y?

I : log2 x+ log2 y= log2(x+ y); II : (log2 x)(log2 y) = log4 xy; III : 2log2 x = x.

A I and III only B II only C II and III only D III only E none of these

229. log8 2=

A
1
4

B 3 C
1
3

D 4 E none of these

230. log2 8=

A 2 B 3 C 4 D 5 E none of these

231. (log2 3)(log3 4)(log4 5)(log5 6)(log6 7)(log7 8) =

A 2 B 3 C 4 D 5 E none of these
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232. If logx 5= 2 then
A x ∈ {−

√
5,
√
5} B x ∈ {

√
5} only C x ∈ {2} only D x ∈ {1,2} E none of these

233. If logx 2x= 2 then
A x ∈ {0,2} B x ∈ {0} only C x ∈ {2} only D x ∈ {1,2} E none of these

234. Given that a> 1, t > 0, s> 0 and that
loga t3 = p, log√a s2 = q,

find loga st in terms of p and q.
A

p
3

+
q
2

B
p
3

+
q
4

C 3p+4q D
p
3

+q E none of these

235. Given that a> 1, s> 1, t > 1, and that

loga
√
t = p, logs a2 = 2p2,

find logs t in terms of p.

A p3 B
2
p3

C 2p3 D
p2

2
E none of these

236. What is the domain of definition of
x "→ logx(1− x

2)?

A [−1;1] B ]0;1] C ]0;1[ D ]−1;1[ E none of these

D.1.25 Goniometric Functions

237. How many solutions does 1− cos2x=
1
2
have in the closed interval [− π

2 ;π ]?

A 0 B 1 C 2 D 3 E none of these

238. How many of the following assertions are true for all real numbers x?

I : csc2 x+ sec2 x= 1; II : |cscx|≥ 1; III : |arcsinx|≤ 1; IV : sin(2π+ x) = sinx

A none B exactly one C exactly two D exactly three E all four

239. Which of the following is a solution to the equation cos(2x−1) =
1
2
?

A
π
6

+
1
2

B
π
3

+
1
2

C
π
6
−
1
2

D
π
3
−
1
2

E none of these

240. If tanθ =
1
4
and C θ is in the third quadrant, find sinθ .

A
−
√
17
4

B −
4√
17

C −
1√
17

D
1√
17

E none of these

241. Find arcsin(sin10).

A 10 B 10−3π C 3π−10 D 10−
7π
2

E none of these

242. Find sin(arcsin4).

A 4 B
√
15 C

√
17 D 4−π E not a real number

243. sec2 x+ csc2 x=

A (sec2 x)(csc2 x) B (secx)(cscx) C secx+ cscx D tan2 x+ cot2 x E none of these
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Situation: Let sinx= 1
3 and siny= 1

4 where x and y are acute angles. Problems 244 through 249 refer to this situation.

244. Find cosx.

A
2
3

B
2
√
2
3

C −
2
3

D −
2
√
2
3

E none of these

245. Find cos2x.

A
2
3

B
4
√
2
3

C
7
9

D
√
2
3

E none of these

246. Find |cos x2 |.

A
1
3

B 1
2

√

1
2 −

√
3
3 C

√

17
18

D 1
2

√

1
2 +

√
3
3 E none of these

247. Find cosy.

A
3
4

B
√
15
4

C −
3
4

D −
√
15
4

E none of these

248. Find sin(x+ y).

A
7
12

B
1
12

C
2
√
2
9

+

√
15
16

D
√
15+2

√
2

12
E none of these

249. Find cos(x+ y).

A
√
30
6

+
1
12

B
√
30
12
−
1
12

C
√
30
12

+
1
12

D
√
30
6
−
1
12

E none of these

250. Which of the following is a real number solution to 2cosx = 3?

A arccos
(
ln2
ln3

)

B arccos
(

ln
3
2

)

C arccos
(
ln3
ln2

)

D arccos(ln6) E there are no real solutions

251. (cos2x)(cos x2 ) =

A 1
2 sin

5
2x−

1
2 sin

3
2x

B 1
2 sin

5
2x+ 1

2 sin
3
2x

C 1
2 cos

5
2x+ 1

2 cos
3
2x

D 1
2 cos

5
2x−

1
2 cos

3
2x

E none of these

252. It is known that cos 2π5 =

√
5−1
2

. Find cos π5 .

A
√
5−1
4

B
√
5+1
2

C −

√

1+
√
5

2
D

√

1+
√
5

2
E none of these

253. It is known that cos 2π5 =

√
5−1
2

. Find cos 4π5 .

A 2−
√
5 B

√
5−2 C 3−

√
5 D

3−
√
5

2
E none of these

254. Find the smallest positive solution to the equation cosx2 = 0.

A 0 B
√
2π
2

C
√
π
2

D
π
2

E none of these

255. cos 223π6 =

A 1
2 B − 12 C −

√
3
2 D

√
3
2 E none of these
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256. If 2cos2 x+ cosx−1= 0 and x ∈ [0;π ] then

A x ∈
{π
3

,π
}

B x ∈
{π
2

,π
}

C x ∈
{π
3

,
π
4

}

D x ∈
{π
3

,
π
6

}

E none of these

257. If 2sin2 x− cosx−1= 0 and x ∈ [0;π ] then

A x ∈
{π
3

,π
}

B x ∈
{π
2

,π
}

C x ∈
{π
3

,
π
4

}

D x ∈
{π
3

,
π
6

}

E none of these

D.1.26 Trigonometry

Situation: Questions 258 through 262 refer to the following. Assume that α and β are acute angles. Assume also that
tanα =

1
3
and that secβ = 3.

258. Find sinα .

A
1
4

B
3
√
10
10

C
√
10
30

D
√
10
10

E none of these

259. Find sinβ .

A
1
3

B
√
10
3

C
2
√
2
3

D
√
2
3

E none of these

260. Find cosα .

A
1
4

B
3
√
10
10

C
√
10
30

D
√
10
10

E none of these

261. Find cosβ .

A
1
3

B
√
10
3

C
2
√
2
3

D
√
2
3

E none of these

262. Find cos(α+β ).

A
√
10
10
−
2
√
5

15
B
√
10
10

+
2
√
5

15
C

2
√
5
5
−
√
10
30

D
2
√
5
5

+

√
10
30

E none of these
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Situation: Questions 263 through 268 refer to the following. 6ABC is right-angled at A, a= 4 and secB= 4. Assume
standard labelling.

263. Find sinC.

A
1
4

B
3
√
15
15

C
√
15
4

D
4
√
15
15

E none of these

264. Find ∠C, in radians.

A arcsin
1
4

B arccos
1
4

C arcsin
√
15
4

D arccos
4√
15

E none of these

265. Find b.

A 1 B
√
15 C 4 D 16 E none of these

266. Find R, the radius of the circumscribed circle to6ABC.

A 2 B
√
15
2

C 2
√
15 D

√
15 E none of these

267. Find the area of6ABC.

A 2 B
√
15
2

C 2
√
15 D

√
15 E none of these

268. Find r, the radius of the inscribed circle to6ABC.

A
√
15

2
√
15+10

B
√
15√

15+5
C
√
15+5√
15

D 2 E none of these
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Situation: Questions 269 through 272 refer to the following. In figure D.148, a regular hexagon is inscribed in a
circle of radius 1.

A

B

Figure D.148: Problems 269 through 272.

269. Find the area of the hexagon.

A
3
2

B 3
√
2 C

3
√
3
4

D
3
√
3
2

E none of these

270. Find the perimeter of the hexagon.

A 6 B 6
√
3 C 3

√
3 D 3 E none of these

271. Find the length of the line segment AB.

A 2 B
√
5 C 3

√
3 D

√
3 E none of these

272. Find the shaded area outside the hexagon but inside the circle.

A π−
3
2

B π−3
√
2 C π−

3
√
3
4

D π−
3
√
3
2

E none of these
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D.2 Old Exam Match Questions
Match the equation with the appropriate graph. Observe that there are fewer graphs than equations, hence, some blank
spaces will remain blank.

1. x− y2 = 3,

2. x2− y2 = 9,

3.
x2

4
+
y2

9
= 1,

4. y2− x2 = 9,

5. x2+ y= 3,

6. x+ y2 = 3,

7.
x2

9
+
y2

4
= 1,

8. x2+ y2 = 9,

9. y− x2 = 3,

10. x+ y= 3,

Figure D.149: Allan Figure D.150: Bob Figure D.151: Carmen Figure D.152: Donald

Figure D.153: Edgard Figure D.154: Frances Figure D.155: Gertrude Figure D.156: Harry
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Figure D.157 shows a functional curve y= f (x). You are to match the letters of figures D.158 to D.168 with the
equations on α through µ below. Some figures may not match with any equation, or viceversa.

Figure D.157: y= f (x) Figure D.158: A Figure D.159: B Figure D.160: C

Figure D.161: D Figure D.162: E Figure D.163: F Figure D.164: G

Figure D.165: H Figure D.166: I Figure D.167: J Figure D.168: K

α . y= f (−x) = β . y=− f (−x) = γ . y= f (−|x|) =

δ . y= f (x+1)+2= ε .y= | f (−|x|)| = ζ . y=−| f (|x|)| =

η . y= | f (−x)| = θ .y= | f (−|x|/2)| = ι . y= f (x/2) =

κ . y=−| f (x)| = λ . y= 1
2 f (x) = µ . y= f (x−1)+1=
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You are to match the letters of figures D.169 to D.180 with the equations on 13 through 24 below. Some figures may
not match with any equation, or viceversa. (0.5 mark each)

Figure D.169: A Figure D.170: B Figure D.171: C Figure D.172: D

Figure D.173: E Figure D.174: F Figure D.175: G Figure D.176: H

Figure D.177: I Figure D.178: J Figure D.179: K Figure D.180: L

13. y= (x−1)2−1= 14. y= (|x|−1)2−1= 15. y=
√
−x=

16. y= |x−1|−1= 17.y= |(x−1)2−1|= 18. y= 2−
√
9− x2 =

19. y= 1+
√
4− x2 = 20.y= |x2−1|= 21. y= 1−

√
−x=

22. y=
1
|x|
−1= 23. y=

∣
∣
∣
1
x
−1

∣
∣
∣= 24. y=

1
|x|−1

=
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D.3 Essay Questions
1. Find the solution set to the inequality

(x−1)(x+2)
(x−3)

≥ 0,

and write the answer in interval notation.

2. For the points P(−1,2) and Q(2,3), find:

(a) the distance between P and Q,
(b) the midpoint of the line segment joining P and Q,
(c) if P and Q are the endpoints of a diameter of a circle, find the equation of the circle.

3. Show that if the graph of a curve has x-axis symmetry and y-axis symmetry then it must also have symmetry about the
origin.

4. Consider the graph of the curve y= f (x) in figure D.181. You may assume that the domain of f can be written in the
form [a;b[∪ ]b;c], where a,b,c are integers, and that its range can be written in the form [u;v], with u and v integers.
Find a,b,c,u and v.

Figure D.181: Problem 4.

5. If the points (1,3), (−1,2), (2,t) all lie on the same line, find the value of t.

6. An apartment building has 30 units. If all the units are inhabited, the rent for each unit is $700 per unit. For every
empty unit, management increases the rent of the remaining tenants by $25. What will be the profit P(x) that
management gains when x units are empty? What is the maximum profit?

7. Draw a rough sketch of the graph of y= x−!x", where !x" is the the floor of x, that is, the greatest integer less than or
equal to x.

8. Sketch the graphs of the curves in the order given. Explain, by which transformations (shifts, compressions,
elongations, squaring, reflections, etc.) how one graph is obtained from the preceding one.

(a) y= x−1
(b) y= (x−1)2

(c) y= x2−2x
(d) y= |x2−2x|

(e) y=
1

|x2−2x|
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(f) y=−
1

|x2−2x|

(g) y=
1

x2−2|x|

9. The polynomial
p(x) = x4−4x3+4x2−1

has a local maximum at (1,0) and local minima at (0,−1) and (2,−1).

(a) Factor the polynomial completely and sketch its graph.
(b) Determine how many real zeros the polynomial q(x) = p(x)+ c has for each constant c.

10. The rational function q in figure D.182 has only two simple poles and satisfies q(x)→ 1 as x→±∞. You may assume
that the poles and zeroes of q are located at integer points. Problems 10a to 10d refer to it.

Figure D.182: Problems 10a to 10d.

(a) Find q(0).
(b) Find q(x) for arbitrary x.
(c) Find q(−3).
(d) Find limx→−2+ q(x).

11. Find the solution to the absolute value inequality

|x2−2x−1|≤ 1,

and express your answer in interval notation.

12. Find all values of x for which the point (x,x+1) is at distance 2 from (−2,1).

13. Determine any intercepts with the axes and any symmetries of the curve

y2 = |x3+1|.

14. Let f (x) = x2. Find
f (x+h)− f (x−h)

h
.
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15. Situation: Questions 15a to 15e refer to the straight line Lu given by the equation

Lu : (u−2)y= (2u+4)x+2u,

where u is a real parameter.

(a) For which value of u is Lu a horizontal line?
(b) For which value of u is Lu a vertical line?
(c) For which value of u is Lu parallel to the line y=−2x+1?
(d) For which value of u is Lu perpendicular to the line y=−2x+1?
(e) Is there a point which is on every line Lu regardless the value of u? If so, find it. If not, prove that there is no such

point.

16. The polynomial p in figure D.183 has degree 3. You may assume that all its roots are integers. Problems 16a to 16b
refer to it.

Figure D.183: Problems 16a to 16b.

(a) Find p(−2), assuming it is an integer.
(b) Find a formula for p(x).

17. A rectangular box with a square base of length x and height h is to have a volume of 20 ft3. The cost of the material for
the top and bottom of the box is 20 cents per square foot. Also, the cost of the material for the sides is 8 cents per
square foot. Express the cost of the box in terms of

(a) the variables x and h;
(b) the variable x only; and
(c) the variable h only.

18. Sketch the graph of the curve y=

√

1− x
x+1

and label the axis intercepts and asymptotes.

19. Find all the rational roots of x5+4x4+3x3− x2−4x−3= 0.

20. Given f (x) =
1

x+1
, graph

(a) y= | f (x)|,
(b) y= f (|x|),
(c) y= | f (|x|),
(d) y= f (−|x|).
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21. Graph y= (x−1)2/3+2 noting any intercepts with the axes.

Problems 22 through 29 refer to the curve with equation y= |x+2|+ |x−3|.

22. Write the equation y= |x+2|+ |x−3|without absolute values if x≤−2.

23. Write the equation y= |x+2|+ |x−3|without absolute values if −2≤ x≤ 3.

24. Write the equation y= |x+2|+ |x−3|without absolute values if x≥ 3.

25. Solve the equation |x+2|+ |x−3|= 7.

26. Solve the equation |x+2|+ |x−3|= 4.

27. Graph the curve y= |x+2|+ |x−3| on the axes below. Use a ruler or the edge of your ID card to draw the straight
lines.

28. Graph the curve y= 4 on the axes below.

29. Graph the curve y= 7 on the axes above.

1

2

3

4

5

6

7

8

9

10

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8-9-10
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Questions 30 through 32 refer to the circle C having centre at O(1,2) and passing through the point A(5,5), as shewn
in figure D.184 below.

1
2
3
4
5
6
7
8
9
10

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10

1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8-9-10

O

A

Figure D.184: Problems 30 through 32 .

30. Find the equation of the circle C .

31. If the point (2,a) is on the circle C , find all the possible values of a.

32. Find the equation of the line L that is tangent to the circle C at A. (Hint: A tangent to a circle at a point is
perpendicular to the radius passing through that point.)

Problems 34 through 39 refer to the graph of a function f is given in figure D.185.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Figure D.185: Problems 34 through 39.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Figure D.186: Problems 34 through 39.

33. Give a brief explanation as to why f is invertible.

34. Determine Dom( f ).
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35. Determine Im ( f ).

36. Draw the graph of f−1 in figure D.186.

37. Determine f (−5).

38. Determine f−1(3).

39. Determine f−1(4).

Figure D.187 has the graph of a curve y= f (x). Draw each of the required curves very carefully.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure D.187: y= f (x).
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Figure D.188: y= f (x)+1.
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Figure D.189:
y= | f (x)+1|.
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Figure D.190: y= f (−|x|).
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Figure D.191: y= | f (−|x|)|.
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Figure D.192: y=− f (−x).
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40. Figure D.199 has the graph of a curve y= f (x), which is composed of lines and a pair of semicircles. Draw each of the
required curves very carefully. Use a ruler or the edge of your id card in order to draw the lines. Shapes with incorrect
coordinate points will not be given credit.
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Figure D.193: y= f (x).
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Figure D.194: y= f (−x).
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Figure D.195: y=− f (x).
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Figure D.196: y= | f (x)|.
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Figure D.197: y= f (−|x|).
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Figure D.198: y= f (|x|).
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41. Use the following set of axes to draw the following curves in succession. Note all intercepts.
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Figure D.199: y= x−2.
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Figure D.200: y= |x−2|.
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Figure D.201: y= |x|−2.
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Figure D.202: y= ||x|−2|.
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Figure D.203:
y= |− |x|−2|.
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Figure D.204: |y| = x−2.

Situation: 6ABC is right-angled at A, and AB= 2 and tan∠B= 1
2 . Problems 42 through 45 refer to this situation.

42. Find AC.

43. Find BC.

44. Find sin∠B.

45. Find tan∠C.

46. Using the standard labels for a6ABC, prove that
a−b
a+b

=
sinA− sinB
sinA+ sinB

.

47. A triangle has sides measuring 2,3,4. Find the cosine of the angle opposite the side measuring 3.

48. Find the area of a triangle whose sides measure 2,3,4. Find the radius of its circumcircle.

49. If in a6ABC, a= 5, b= 4, and cos(A−B) =
31
32
, prove that cosC =

1
8
and that c= 6.

50. A triangle with vertices A,B,C on a circle of radius R, has the side opposite to vertex A of length 12, and the angle at
A= π

4 . Find diameter of the circle.
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51. 6ABC has sides of length a,b,c, and circumradius R= 4. Given that the triangle has area 5, find the product abc.

52. Find, approximately, the area of a triangle having two sides measuring 1 and 2 respectively, and angle between these
sides measuring 35◦. What is the measure of the third side?

53. Find the area and the perimeter of a regular octagon inscribed in a circle of radius 2.

54. Two buildings on opposite sides of a street are 45 m apart. From the top of the taller building, which is 218 m high, the
angle of depression to the top of the shorter building is 13.75◦. Find the height of the shorter building.

55. A ship travels for 3 hours at 18 mph in a direction N28◦E. From its current direction, the ship then turns through an
angle of 95◦ to the right and continues traveling at 18 mph. How long will it take before the ship reaches a point
directly east of its starting point?

56. Let tanx+ cotx= a. Find tan3 x+ cot3 x as a polynomial in a.

57. If cos
π
7

= a, find the exact value of cos
π
14
and cos

2π
7
in terms of a.

58. Given that cscx=−4, and C x lies in quadrant III, find the remaining trigonometric functions.

59. Graph the curve y= 2− cos
x
2
.

60. Graph the curve y=
∣
∣
∣2− cos

x
2

∣
∣
∣.

61. Find the smallest positive solution, if any, to the equation 3cos3x = 2. Approximate this solution to two decimal places.

62. Find all the solutions lying in [0;2π ] of the following equations:

(a) 2sin2 x+ cosx−1= 0
(b) sin2x= cosx
(c) sin2x= sinx
(d) tanx+ cotx= 2csc2x

63. Find the exact value of sin
88π
3
.

64. Find the exact value of tan
(

arcsin
1
3

)

.

65. Is sin(arcsin30) a real number?

66. Find the exact value of arcsin(sin30).

67. Find the exact value of arcsin(cos30).

68. If x and y are acute angles and sin
x
2

=
1
3
and cosy=

3
4
, find the exact value of tan(x− y).

69. Find the exact value of the product
P= cos

π
7
· cos

2π
7

· cos
4π
7

.

70. How many digits does 5200031000 have?

71. What is 5200031000 approximately?

72. Let a> 1, x> 1, y> 1. If loga x3 = N and loga1/3 y
4 =M, find loga2 xy in terms of N andM. Also, find logx y.

73. Graph y= 3−x−2.

74. Graph y= 3−|x|−2.

75. Graph y= |3−x−2|.
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76. Graph y= ln(x+1).

77. Graph y= ln(|x|+1).

78. Graph y= | ln(x+1)|.

79. Graph y= | ln |(x+1)||.

80. Solve the equation 3x+
1
3x

= 12.

81. The expression
(log2 3) · (log3 4) · (log4 5) · · · (log511 512)

is an integer. Find it.

82. The expression
log(tan1◦)+ log(tan2◦)+ log(tan3◦)+ · · ·+ log(tan89◦)

is an integer. Find it.

83. Prove that the equation

cos
((

3
2

)x
−1

)

=
1
2
,

has only 4 solutions lying in the interval [0;2π ].

84. Prove that the equation
cos(log3 x−2) =

1
2
,

has only 2 solutions lying in the interval [0;2π ].



E Maple

The purpose of these labs is to familiarise you with the basic operations and commands of Maple. The commands used here
can run on any version of Maple (at least V through X).

E.1 Basic Arithmetic Commands
Maple uses the basic commands found in most calculators: + for addition,− for subtraction, ∗ for multiplication, / for
division, and ∧ for exponentiation. Maple also has other useful commands like expand and simplify. Be careful with
capitalisation, as Maple distinguishes between capital and lower case letters. For example, to expand the algebraic expression
(
√
8−21/2)2, type the following, pressing ENTER after the semicolon:

> expand((sqrt(8)-2ˆ(1/2))ˆ2);

If you desire a decimal approximation of the above, either put a decimal point after the numbers, or use the command
evalf. Notice that on the first one Maple is dealing with two approximations and hence, it outputs an error!

> (sqrt(8.)-2.ˆ(1/2))ˆ2;
> evalf((sqrt(8)-2ˆ(1/2))ˆ2);

Now, prove that (a+b+ c)(a2+b2+ c2−ab−bc− ca)= a3+b3+ c3−3abc by expanding the expression on the sinistral
side:

> expand((a+b+c)*(aˆ2+bˆ2+cˆ2-a*b-b*c-c*a));

To simplify a(a−1)+ (a−2)(a2+a+2) use the command simplify:

> simplify(a*(a-1)+(a-2)*(aˆ2+a+2));

The absolute value of a real quantity is found using the function absolute value: abs()

> abs(-5);

529 Example Factor x10− x8−2x7− x6− x4+ x2+2x+1 using Maple.

Solution: " The required command line is
> factor(xˆ10-xˆ8-2*xˆ7-xˆ6-xˆ4+xˆ2+2*x+1);

(x−1)(x+1)(x2− x+1)(x2− x−1)(x2+ x+1)2

#

530 Example Obtain the partial fraction expansion of
x

x3+1
using Maple.

Solution: " The required command line is
> convert(x/(xˆ3-1), parfrac,x);

1
3
·
1

x−1
−
1
3
·

x−1
x2+ x+1

#

269
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531 Example Reduce the fraction
x−1
x4−1

.

Solution: " The required command line is
> simplify((x-1)/(xˆ4-1));

1
x3+ x2+ x+1

#

Homework
E.1.1 Problem Write the exact command line to compute (82−67)(8−(3)(2)) and give the output (result) obtained.

E.1.2 Problem Expand using Maple:
(a+b+ c)3−3(a+b)(b+ c)(c+a).

E.1.3 Problem Use Maple to verify that

(x+ y)5− x5− y5 = 5xy(x+ y)(x2+ xy+ y2)

and
(x+a)7− x7−a7 = 7xa(x+a)(x2+ xa+a2)2.

E.1.4 Problem Write Maple code to verify that a product of sums of squares can be written as a sum of squares, that is,
verify that

(a2+b2)(c2+d2) = (ac+bd)2+(ad−bc)2.

E.2 Solving Equations and Inequalities

Maple can be used to solve equations and inequalities. Type the following, pressing ENTER after the semicolon:

> solve(xˆ2-3*x+2=0, x);
> solve(abs(x-1)+abs(x+2)=4, x);
> solve(abs(x-1)+abs(x+2)=3, x);
> solve((x+1)/(x*(x-1))>=0, x);

Homework
E.2.1 Problem Write the exact command line to find the solutions of the equation x2+ |x−1|= 5 and name all the solutions.

E.3 Maple Plotting Commands
Although there is no direct Maple command1 to express |2x|+ |x+2|without absolute values, we can graph the curve
y= |2x|+ |x+2|. To do so, we must first load the plot library.

> with(plots);
> plot(abs(2*x)+abs(x+2),
> x=-10..10,y=-10..10);

Plot now the curve y= |x+1|+ |x−1|.

> plot(abs(x+1)+abs(x-1),
> x=-10..10,y=-10..10);

1To my knowledge,that is.



Assignment Rules in Maple 271

Notice the difference between the above curve and y= |x+1|− |x−1|, and y= |x−1|− |x+1|.

> plot(abs(x+1)-abs(x-1),
> x=-10..10,y=-10..10);
> plot(abs(x-1)-abs(x+1),
> x=-10..10,y=-10..10);

The equation of a circle with centre at (−1,2) and radius 5 is (x+1)2+(y−2)2 = 25. To graph it, type the following
commands:

> implicitplot((x+1)ˆ2+(y-2)ˆ2=25, x=-7..5,
> y=-4..8);

What is the main difference between the commands plot and implicitplot? Since we haven’t discussed functions yet,
let us just say that you use plot when you can solve uniquely for y. In this case, y does not appear in the equation of the
command (other than for stipulating ranges). If you can’t solve uniquely for y, then use implicitplot.

Homework

E.3.1 Problem

1. Write the exact command line to find the solution set to the inequality
x3− x
x−2

≥−1.

2. Write the exact command line to graph the circle (x+1)2+(y−2)2 = 4. Pick as small ranges as possible for x and y
that shew the whole graph.

E.4 Assignment Rules in Maple

Let us define the assignment rule f :R→R, f (x) = x3− x2+1 and evaluate at a few points.

> f:=x->xˆ3-xˆ2+1;
> f(1);
> f(-2);

We now wish to plot f . For this type:
> with(plots);
> plot(f(x), x=-10..10,y=-10..10);

Let us plot various transformations of f .

> plot(f(-x), x=-10..10,y=-10..10);
> plot(-f(x), x=-10..10,y=-10..10);
> plot(-f(-x), x=-10..10,y=-10..10);
> plot(f(abs(x)), x=-10..10,y=-10..10);
> plot(f(-abs(x)), x=-10..10,y=-10..10);
> plot(abs(f(x)), x=-10..10,y=-10..10);
> plot(abs(f(abs(x))),
> x=-10..10,y=-10..10);
> plot(abs(f(-abs(x))),
> x=-10..10,y=-10..10);
> plot(f(x+5),
> x=-10..10,y=-10..10);
> plot(f(x-5),
> x=-10..10,y=-10..10);
> plot(f(x)+5,
> x=-10..10,y=-10..10);
> plot(f(x)-5,
> x=-10..10,y=-10..10);
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Homework
E.4.1 Problem You are to match the following transformations with the corresponding equation, given the original curve
y= f (x).

y= f (−x) A. moves the original graph five units down

y=− f (−x) B. moves the original graph five units up

y= f (x−5) C. moves the original graph five units left

y= f (x+5) D. moves the original graph five units right

y= f (x)+5 E. a reflexion about the x-axis of the original graph

y= f (x)−5 G. a reflexion about the y-axis of the original graph

y=− f (x) H. a reflexion about (0,0) of the original graph

y= f (−|x|) I. every y-coordinate of the original graph becomes positive

y= | f (x)| J. recognises only x< 0 of the original graph, and it’s an even graph.

y= f (|x|) K. recognises only x> 0 of the original graph, and it’s an even graph.

E.5 Polynomials Splitting in the Real Numbers
We will use Maple in order to graph polynomials all whose zeroes are real numbers.

> with(plots);
> a:=x->x*(x-1)*(x+1);
> plot(a(x), x=-5..5, y=-5..5);
> b:=x->xˆ2*(x-1)*(x+1);
> plot(b(x), x=-5..5, y=-5..5);
> c:=x->x*(x-1)ˆ2*(x+1);
> plot(c(x), x=-5..5, y=-5..5);
> d:=x->x*(x-1)ˆ2*(x+1)ˆ2;
> plot(d(x), x=-5..5, y=-5..5);
> f:=x->xˆ3*(x-1)ˆ3*(x+1)ˆ3;
> plot(f(x), x=-5..5, y=-5..5);
> g:=x->((x-1)ˆ2+1)*(xˆ2+1);
> plot(g(x), x=-5..5, y=-5..5);
> a(2); b(2); c(2); d(2); f(2); g(2);
> a(-2); b(-2); c(-2); d(-2); f(-2);
> g(-2);

Homework
E.5.1 Problem Answer the following questions. In all items, p :R→R refers to a polynomial all whose zeroes are real
numbers.

1. If the multiplicity of a zero of p is one, then does the graph of p cross the x-axis, or is it tangent to it?

2. If the multiplicity of a zero of p is even, then does the graph of p cross the x-axis, or is it tangent to it?

3. If the multiplicity of a zero of p is odd and at least three, then does the graph of p cross the x-axis, or is it tangent to it?

4. Does the graph of x "→ g(x) above cross the x-axis? Does g have any real zeroes?

E.6 Sets, Lists, and Arrays
Maple has a rich variety of data structures, among them sets, lists, and arrays. Roughly speaking, a set corresponds to a set in
combinatorics: the order of the elements is irrelevant, and repetitions are not taken into account. Sets are defined by using
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curly braces { }. In a list, the order of the elements is important and repetitions are taken into account. Lists are defined by
using square brackets [ ]. Arrays are a generalisations of matrices. They can be modified and are declared with the
command array().
We will first consider sets and set operations. In order to facilitate our presentation, we will give names to the various objects
we will define. In order to attach a name, we need the assignment operator :=, where there is no space between the colon
and the equal sign. Maple is able to perform set operations with the commands union, intersect, and minus. To check
whether two sets are equal we may use the command evalb() (evaluate boolean).

532 Example Consider the sets
A= {1,2,3,a,b,c,d}, B= {3,4,5,a,b,e, f}.

Use Maple to obtain
A∪B, A∩B, A\B,

and to verify that
(A\B)∪ (B\A)= (A∪B)\ (A∩B).

Solution: " We first define the sets and then perform the desired operations. The following command lines
accomplish what is required.

> A:={1,2,3,a,b,c,d};
A := {1,2,3,a,b,c,d}

> B:={3,4,5,a,b,e,f};
B := {3,4,5,a,b,e, f}

> A union B
{1,2,3,4,5, f ,a,b,c,d,e}

> A intersect B;
{3,a,b}

> A minus B;

{1,2,c,d}
> evalb((A union B) minus (A intersect B)=(A
> minus B) union (B minus A));

true

#



F Some Answers and Solutions

Answers

1.1.1 This is the set {−9,−6,−3,0,3,6,9}.

1.1.2 We have
x2 − x= 6 =⇒ x2 − x−6= 0 =⇒ (x−3)(x+2) = 0 =⇒ x ∈ {−2,3}.

Since −2 '∈ N, we deduce that
{x ∈ N : x2 − x= 6,}= {3}.

1.1.3 We have
2<

x
6

< 3 =⇒ 12< x< 18 =⇒ x ∈ {13,14,15,16,17}.

1.1.4 A∪B= {a,b,c,d,e, f , i,o,u},A∩B= {a,e}, A\B= {b,c,d, f },B\A= {i,o,u}

1.1.5 (i) {2}, (ii) {−2,2}, (iii)∅, (iv) ]−4;4[, (v) {−3,−2,−1,0,1,2,3},(vi) ]−1;1[, (vii) {0}, (viii)∅

1.1.6 {−32,−33,−34,−35,−36,−37,−38,−39,−40,−41,−42,−43,−44}

1.1.7 Observe that applying k times the second rule, n+5k is in S. Similarly, 3k · 2 is in S by applying k times the third
rule. Since 2 is in S, 2+5k is in S, that is, numbers that leave remainder 2 upon division by 5 are in S. This means that

{2,7,12, · · ·2002,2007}⊆ S.

Since 3 · 2= 6 is in S, then the numbers 6+5k= 1+5(k+1) are in S, that is, numbers 6 or higher that leave remainder 1
upon division by 5. Thus the numbers

{6,11,16, · · ·2001,2006}⊆ S.

Since 3 ·6= 18 is in S, then the numbers 18+5k= 3+5(k+3) are in S, that is, numbers 18 or higher that leave remainder
3 upon division by 5. Thus the numbers

{18,23,28, · · ·2003,2008}⊆ S.

Since 3 · 18= 54 is in S, then the numbers 54+5k= 4+5(k+10) are in S, that is, numbers 54 or higher that leave
remainder 4 upon division by 5. Thus the numbers

{54,59,64, · · ·2004}⊆ S.

Now, we claim that there are no multiples of 5 in S. For by combining the rules every number in S has the form 3a · 2+5b,
with a≥ 0, b≥ 0 integers. Since 3a · 2 is never a multiple of 5, this establishes the claim. Hence the largest element of

{1,2,3, . . .,2008}

not in S is 2005.

1.1.9 ]−1;5[, ]−5;+∞[, ]−5;−1], [5;+∞[

1.1.10 ∅, ]−5;3[∪ [4;+∞[, ]−5;3[, [4;+∞[

1.1.11
[

−0.5;−2+
√
3
[

,
[

−1;
√
2−1

]

, [−1;−0.5[,
[

−2+
√
3;
√
2−1

]

1.1.13 Hint: Consider the N+1 numbers tx−?tx@, t = 0,1,2, . . .,N.

1.2.1 If x= 0.123123123 . . . then 1000x= 0.123123123 . . .giving 1000x− x= 123, since the tails cancel out. This

results in x=
123
999

=
41
333

.

1.2.2 If
√
8= 2

√
2 were rational, then there would exist strictly positive natural numbers a,b such that 2

√
2=

a
b
, which

entails that
√
2=

a
2b
, a rational number, a contradiction.

1.2.3 If
√
2+
√
3 were rational, then there would exist strictly positive natural numbers a,b such that

√
2+
√
3=

a
b
,

which entails that

(
√
2+
√
3)2 =

a2

b2
=⇒ 2+2

√
6+3=

a2

b2
=⇒

√
6=

a2

2b2
−
5
2

.

The dextral side of the last equality is a rational number, but the sinistral side is presumed irrational, a contradiction.

1.2.4 Yes! There multiple ways of doing this. An idea is to take the first decimal digits of
√
2, remove them, and supplant

them with the given string. For example, for 12345 we proceed as follows:

√
2≈ 1.414213562 . . . =⇒

√
2

106
≈ 0.000001414213562 . . ..

Then the number √
2

106
+0.12345

is an irrational number whose first five digits after the decimal point are 12345.

Another idea is to form the number

0.1234501234500123450000123450000000012345 . . .

where one puts 2k zeroes between appearances of the string 12345.

1.2.5 There are infinitely many answers. Since
√
2< 1.5 and 1.7<

√
3, we may take, say, 1.6. Of course, using the

mentioned inequalities we may take also 1.61, 1.601, 1.52, etc.

1.2.6 There are infinitely many answers. One may take the average,
√
2+
√
3

2
.

1.2.7 Since
1
10

= 0.1 and 0.111<
1
9

=, we may take, say 0.110100100001000000001 . . ., where there are

2k ,k= 1,2, . . .0’s between consecutive 1’s. Another approach can be taking
√
2−1.314, since

√
2−1.314< 0.1003.

1.3.1 We have,

(

2
x

+
x
2

)2
−
(

2
x
−
x
2

)2
=

(

4
x2

+2+
x2

4

)

−

(

4
x2
−2+

x2

4

)

= 4.

1.3.2 We have
1= (x+ y)2 = x2 + y2 +2xy= x2 + y2 −4 =⇒ x2 + y2 = 5.

Hence,
(x− y)2 = x2 + y2 −2xy= 5−2(−2) = 9 =⇒ x− y= ±3.

In the first case,
x+ y= 1,x− y= 3 =⇒ x= 2, y= −1.

In the second case,
x+ y= 1,x− y=−3 =⇒ x=−1, y= 2.

1.3.3 We have
7= x3 + y3 = (x+ y)(x2 − xy+ y2 ) = x2 − xy+ y2 .

Also,
1= (x+ y)2 = x2 + y2 +2xy.

This gives
6= (x2 − xy+ y2 )− (x2 +2xy+ y2 ) = −3xy =⇒ −2 = xy.

Hence we have the system
x+ y= 1, xy =−2,

which was already solved in problem 1.3.2.

1.3.4 We have

12−22 +32−42+ · · ·+992−1002 = (1−2)(1+2)+(3−4)(3+4)+ · · ·+(99−100)(99+100)

= −(1+2+3+4+ · · ·+99+100)

To compute the sum of the arithmetic progression 1+2+3+4+ · · ·+99+100, use Gauß ’s trick: if
S= 1+2+3+4+ · · ·+99+100, then S= 100+99+ · · ·+2+1. Hence

2S= (1+100)+(2+99)+ · · ·+(99+2)+(100+1) = 101 · 100 =⇒ S = 5050.

This means that
12 −22+32 −42+ · · ·+992−1002 = −5050.

1.3.5 Since n3 −8= (n−2)(n2+2n+4), for it to be a prime one needs either n−2= 1 =⇒ n= 3 or n2+2n+4= 1,
but this last equation does not have integral solutions. Hence 33 −8= 19 is the only such prime.

1.3.6 Put x= 1234567890. Then

12345678902−1234567889 · 1234567891= x2 − (x−1)(x+1) = x2 − (x2 −1) = 1.

1.3.7 If the numbers are x,y then x+ y= 3 and xy= 9. This gives

1
x

+
1
y

=
x+ y
xy

=
3
9

=
1
3

.

1.3.8 We have

1, 000, 002, 000, 001 = 1012+2 · 106+1

= (106+1)2

= ((102)3 +1)2

= (102+1)2((102)2−102 +1)2

= 101299012,

whence the prime sought is 9901.

274
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1.3.10 One can expand the dextral side and obtain the sinistral side.

x3 + y3 = (x+ y)3 −3xy(x+ y)

twice:

a3+b3 + c3 −3abc = (a+b)3+ c3 −3ab(a+b)−3abc

= (a+b+ c)3−3(a+b)c(a+b+ c)−3ab(a+b+ c)

= (a+b+ c)((a+b+ c)2−3ac−3bc−3ab)

= (a+b+ c)(a2+b2+ c2 −ab−bc− ca).

1.3.11 From problem 1.3.9,

36= (a+b+ c)2 = a2 +b2+ c2 +2(ab+bc+ ca) = a2+b2+ c2 +4 =⇒ a2 +b2+ c2 = 32.

From problem 1.3.10,

abc=
a3+b3 + c3 − (a+b+ c)(a2+b2 + c2 −ab−bc− ca)

3
=
6− (−6)(32−2)

3
= 62.

1.3.12 Put x= 1 000 000= 106. Then

x(x+1)(x+2)(x+3) = x(x+3)(x+1)(x+2) = (x2 +3x)(x2 +3x+2).

Again, put y= x2 +3x. Then

x(x+1)(x+2)(x+3)+1 = (x2 +3x)(x2 +3x+2)+1= y(y+2)+1= (y+1)2 .

All this gives,
√

x(x+1)(x+2)(x+3)+1 = y+1

= x2 +3x+1

= 1012+3 · 106+1

= 1 000 003 000 001.

1.3.13 We have,
√

5+2
√
6=

√

2+2
√
6+3=

√

(
√
2+
√
3)2 =

√
2+
√
3

1.3.14 Transposing,

a2−ab+b2−bc+ c2 −dc+d2 −da= 0,

or
a2

2
−ab+

b2

2
+
b2

2
−bc+

c2

2
+
c2

2
−dc+

d2

2
+
d2

2
−da+

a2

2
= 0.

Factoring,
1
2

(a−b)2+
1
2

(b− c)2 +
1
2

(c−d)2 +
1
2

(d−a)2 = 0.

As the sum of positive quantities is zero only when the quantities themselves are zero, we obtain a= b,b= c,c= d,d = a,
which proves the assertion.

1.3.15 We have

(x+ y)2 = (x−1)(y+1) =⇒ (x−1+ y+1)2 = (x−1)(y+1)

=⇒ (x−1)2+2(x−1)(y+1)+(y+1)2 = (x−1)(y+1)

=⇒ (x−1)2+(x−1)(y+1)+(y+1)2 = 0

=⇒
(

x−1+
y+1
2

)2
+
3(y+1)2

4
= 0.

This last is a sum of squares, which can only be zero if

x−1+
y+1
2

= 0, y+1= 0 =⇒ x= 1,y=−1.

Thus (x,y) = (1,−1) is the only solution.

1.3.16 Observe that

a2+b2

a+b
+
b2+ c2

b+ c
+
c2 +a2

c+a
=

a2+b2

−c
+
b2+ c2

−a
+
c2 +a2

−b

= −a2
(

1
b

+
1
c

)

−b2
(

1
c

+
1
a

)

− c2
(

1
a

+
1
b

)

= −a2
(

c+b
bc

)

−b2
(

a+ c
ca

)

− c2
(

b+a
ab

)

=
a3

bc
+
b3

ca
+
c3

ab
,

as was to be shewn.

1.3.17 Put S = 1+a+a2+ · · ·+an−1 . Then aS= a+a2+ · · ·+an−1 +an. Thus

S−aS= (1+a+a2+ · · ·+an−1)− (a+a2+ · · ·+an−1 +an) = 1−an,

and from (1−a)S= S−aS= 1−an we obtain the result.

By making the substitution a= y
x in the preceding identity, we see that

1+
y
x

+
( y
x

)2
+ · · ·+

( y
x

)n−1
=
1−

( y
x
)n

1− y
x

we obtain
(

1−
y
x

)
(

1+
y
x

+
( y
x

)2
+ · · ·+

( y
x

)n−1)
= 1−

( y
x

)n
,

or equivalently,
(

1−
y
x

)
(

1+
y
x

+
y2

x2
+ · · ·+

yn−1

xn−1

)

= 1−
yn

xn
.

Multiplying by xn both sides,

x
(

1−
y
x

)

xn−1
(

1+
y
x

+
y2

x2
+ · · ·+

yn−1

xn−1

)

= xn
(

1−
yn

xn

)

,

which is
xn − yn = (x− y)(xn−1 + xn−2y+ · · ·+ xyn−2 + yn−1 ),

yielding the result.

1.3.18 Observe that

(ac+bd)2 +(ad−bc)2 = a2c2 +b2d2 +a2d2+b2c2 = (a2 +b2)(c2 +d2).

1.4.1

1. Observe that x2 − x−6= (x−3)(x+2). Hence, in a neighbourhood of x= −2 and x= 3, we have:

x ∈ ]−∞[−2 ]−2;3[ ]3;+∞[

x+2 − + +

x−3 − − +

(x+2)(x−3) + − +

2. From the diagram we deduce that the desired set is [−2;3].

3. From the diagram we deduce that the desired set is ]−∞;−2[∪ [3;+∞[.

1.4.2 {x ∈ R : x ∈ ]−∞;−3]∪ ]−2;2]∪ ]3;+∞[}.

1.4.3 As the equation x2 − x−4= 0 does not have rational roots, we complete squares to find its roots:

x2 − x−4= x2 − x+
1
4
−
1
4
−4=

(

x−
1
2

)2
−
17
4

=

(

x−
1
2
−
√
17
2

)(

x−
1
2

+

√
17
2

)

.

Therefore

x2 − x−4≥ 0 ⇐⇒

(

x−
1
2
−
√
17
2

)(

x−
1
2

+

√
17
2

)

≥ 0.

We may now form a sign diagram, puncturing the real line at x=
1
2
−
√
17
2

and at x=
1
2

+

√
17
2
:

x ∈

]

−∞;
1
2
−
√
17
2

[ ]

1
2
−
√
17
2
;
1
2

+

√
17
2

[ ]

1
2

+

√
17
2
;+∞

[

(

x−
1
2
−
√
17
2

)

− + +

(

x−
1
2

+

√
17
2

)

− − +

(

x−
1
2
−
√
17
2

)(

x−
1
2

+

√
17
2

)

+ − +

We deduce that
{

x ∈ R : x2 − x−4 ≥ 0
}

=

]

−∞;
1
2
−
√
17
2

[

∪

]

1
2

+

√
17
2
;+∞

[

.

1.4.4 [−2;−1]

1.4.5 [3;+∞[

1.4.6
]
12
25
;
1
2

]

1.4.7
{
5
2

}

1.4.8 From the identity x2 − y2 = (x− y)(x+ y) and using the fact that
√
n<
√
n+1, we obtain

n+1−n= 1 =⇒ (
√
n+1−

√
n)(
√
n+1+

√
n) = 1 =⇒

√
n+1−

√
n=

1√
n+1+

√
n

>
1

2
√
n+1

.

Hence,
1

2
√
n+1

<
1
10

=⇒ 5<
√
n+1 =⇒ 25< n+1 =⇒ n> 24.

Since 5.12 = 26.01> 26, we have
√
26< 5.1. Hence,

√
26−

√
25< 5.1−5=

1
10

,

and so n= 25 fulfills the inequality.
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1.4.9 The quadratic equation will not have any real solutions as long as its determinant be strictly negative:

t2− (t−1)(t) < 0 =⇒ t ∈ ]−∞; 0[.

Hence At = ∅ ⇐⇒ t ∈ ]−∞; 0[.
The set will have exactly one element either when t−1= 0, which means that the equation reduces to a linear one, or if
the quadratic equation has a repeated root, which occurs when its discriminant vanishes:

t2− (t−1)(t) = 0 =⇒ t = 0.

Thus the set has exactly one element when t = 1 and when t = 0, and it is seen that

A1 = {x ∈ Rx+
1
4

= 0} = {−
1
4
}, A0 = {x ∈ R− x2 = 0}= {0}.

The quadratic equation will have exactly two real solutions when its discriminant is strictly positive:

t−1 '= 0, t2− (t−1)(t) > 0 =⇒ t ∈ ]0;1[∪ ]1;+∞[.

In this case,

At =
{

x ∈ R : (t−1)x2 + tx+
t
4

= 0
}

=

{

4
√
t−4t

8t−8
,
−4
√
t−4t

8t−8

}

.

1.4.10 {−1,0,1,2,3,4,5,6,7,8,9}

1.4.11 The inequality is obtained at once from

2x3 −6x2 +
11
2
x+1>= x

((√
2x−

3√
2

)2
+1

)

+1.

1.4.12 Either x ∈ ]−∞; 0], or x ∈ ]0;1], or x ∈ ]1;+∞[. In the first case the inequality is obvious, since for x≤ 0

x8 ≥ 0,−x5 ≥ 0,x2 ≥ 0,−x≥ 0 =⇒ x8 − x5 + x2 − x+1> 0.

In the second case we regroup

x8 − x5 + x2 − x+1= x8 + x2(1− x3 )+(1− x) > 0.

In the third case we have
x8 − x5 + x2 − x+1= x5(x3 −1)+ x(x−1)+1 > 0

1.4.13 25

1.5.1
√
3−

√√
15−2

1.5.2 For x> 1
2 , we have |1−2x|= 2x−1. Thus |x− |1−2x||= |x− (2x−1)|= |− x+1|. If x> 1 then

|− x+1| = x−1. In conclusion, for all x> 1 (and a fortiori x> 2, we have |x− |1−2x||= x−1.

1.5.3 If x<−2 then 1+x <−1 and hence |1+x| =−(1+x) = −1−x. Thus |1− |1+x|| = |1−(−1−x)| = |2+x|. But
since x<−2, x+2< 0 and so |2+ x|=−2− x. We conclude that |1− |1+ x||= −2− x.

1.5.7 Se tiene

|1−2x|< 3 ⇐⇒ −3< 1−2x< 3 ⇐⇒ −4< −2x< 2 ⇐⇒ −1< x< 2 ⇐⇒ x ∈ ]−1;2[,

en donde ha of recordarse que el dividir a una desigualdad por una cantidad negativa, se invierte el sentido of la
desigualdad.

1.5.8 Four. Either x2 −4x= −3 orx2 −4x= 3. Thus x ∈ {1,3,2−
√
7,2+

√
7}.

1.5.9 We know that
|x−3| = ±(x−3) and that |x+2|= ±(x+2).

We puncture the real line at x= 3 and at x= −2, that is, where the absolute value terms change sign. We have

x ∈ ]−∞;−2[ ]−2;3[ ]3;+∞[

|x−3|= 3− x 3− x x−3

|x+2|= −x−2 x+2 x+2

|x−3|+ |x+2|= −2x+1 5 2x−1

Therefore ,

|x−3|+ |x+2|=







−2x+1 if x≤ −2,

5 if −2≤ x≤ 3,

2x−1 if x≥ 3.

1. To solve |x−3|+ |x+2|= 3, we need

−2x+1= 3 if x≤ −2, 5= 3 if −2≤ x≤ 3, 2x−1= 3 if x≥ 3.

The first equation gives x= −1. As −1 '∈ ]−∞;−2], this is a spurious solution. The second equation is a
contradiction. In the third equation, 2x−1= 3 =⇒ x= 2, which is also spurious since 2 '∈ [3;+∞[.
Therefore the equation |x−3|+ |x+2|= 3 does not have real solutions.

2. To solve |x−3|+ |x+2|= 3, we need

−2x+1= 5 if x≤ −2, 5= 5 if −2≤ x≤ 3, 2x−1= 5 if x≥ 3.

The first equation gives x= −2. As −2 ∈ ]−∞;−2], which is a legitimate solution. The second equation is a
tautology, which means that all the elements in the interval [−2;3] are solutions. In the third equation
2x−1= 5 =⇒ x= 3, which is also a legitimate solution, since 3 ∈ [3;+∞[. Therefore the equation
|x−3|+ |x+2|= 5 has an infinite number of real solutions, all in the interval [−2;3].

3. To solve |x−3|+ |x+2|= 7, we need

−2x+1= 7 if x≤ −2, 5= 7 if −2≤ x≤ 3, 2x−1= 7 if x≥ 3.

The first equation gives x= −3. As −3 ∈ ]−∞;−2], this is a legitimate solution. The second equation is a
contradiction. In the third equation 2x−1= 7 =⇒ x= 4, which is also a legitimate solution since
4 ∈ [3;+∞[. Therefore the equation |x−3|+ |x+2|= 3 has exactly two real solutions:

{x ∈ R : |x−3|+ |x+2|= 7} = {−3,4}.

1.5.10 x ∈ {−2,1+
√
5}

1.5.11 We have

|5x−2|= |2x+1| ⇐⇒ (5x−2= 2x+1) or (5x−2 =−(2x+1))

⇐⇒ (x= 1) or (x=
1
7

)

⇐⇒ x ∈
{
1
7

,1
}

1.5.12 The first term vanishes when x= 2 and the second term vanishes when x= 3. We decompose R into (overlapping)
intervals with endpoints at the places where each of the expressions in absolute values vanish. Thus we have

R = ]−∞; 2] ∪ [2;3] ∪ [3;+∞[.

We examine the sign diagram

x ∈ ]−∞; 2] [2;3] [3;+∞[

|x−2|= −x+2 x−2 x−2

|x−3|= −x+3 −x+3 x−3

|x−2|+ |x−3|= −2x+5 1 2x−5

Thus on ]−∞; 2] we need −2x+5 = 1 from where x= 2. On [2;3] we obtain the identity 1= 1. This means that all the
numbers on this interval are solutions to this equation. On [3;+∞[we need 2x−5= 1 from where x= 3. Upon assembling
all this, the solution set is {x : x ∈ [2;3]}.

1.5.13 {− 12 , 32 }

1.5.14 {x|x ∈ [0;1]}

1.5.15 {−1}

1.5.16 [1;+∞[

1.5.17 ]−∞;−2]

1.5.19 { 32 +
√
17
2 , 32 −

√
17
2 ,1,2}

1.5.20 {−1,1}

1.5.21 {−3,−2,2,3}

1.5.22 {−6,1,2,3}

1.5.23 We have

|x+3| =







−x−3 if x+3< 0,

x+3 if x+3≥ 0.
|x−4| =







−x+4 if x−4< 0,

x−4 if x−4≥ 0.

This means that when x<−3
|x+3|− |x−4|= (−x−3)− (−x+4) =−7,

a constant. Since at x=−3 we also obtain−7, the result holds true for the larger interval x≤−3.

1.5.24 There are four solutions: {−1−
√
2,−1+

√
2,1−

√
2,−1+

√
2}.

1.5.25 ]−∞;−1].

1.5.26 Clearly, max(x,y)+min(x,y) = x+ y. Now, either |x− y| = x− y and so x≥ y, which signifies that
max(x,y)−min(x,y) = x− y, or |x− y| =−(x− y) = y− x, which means that y≥ x and thus max(x,y)−min(x,y) = y− x.
At any rate, max(x,y)−min(x,y) = |x− y|. Solving the system of equations

max(x,y)+min(x,y) = x+ y

max(x,y)−min(x,y) = |x− y| ,

for max(x,y) and min(x,y), we obtain the result.

1.5.27 {x ∈ R : |x−1||x+2|> 4}= ]−∞;−3]∪ [2;+∞[

1.5.28 ]−4;−1[∪ ]2;5[

2.1.2 4.5 square units.
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2.1.3 TFTFTTF

2.1.4 False. (R\{0})2 consists of the plane minus the axes. R2 \{(0,0)} consists of the plane minus the origin.

2.2.1 2
√
10

2.2.2
√
2|b−a|

2.2.3
√

(a2 −b)2+(b2 −a)2

2.2.4 We have,

d〈(a,b),
(

a+ c
2

,
b+d
2

)

〉=

√
(

a−
(

a+ c
2

))2
+

(

b−
(

b+d
2

))2
=

√
(

a− c
2

)2
+

(

b−d
2

)2
.

Also,

d〈
(
a+ c
2

,
b+d
2

)

, (c,d)〉=

√
((

a+ c
2

)

− c
)2

+

((
b+d
2

)

−d
)2

=

√
(
a− c
2

)2
+

(
b−d
2

)2
.

2.2.5
√

4x2 +(a+b)2t2

2.2.6 C is the point that divides AB in the ratio 3 : 2. By Joachimstal’s formula,

C =

(

2 · 1+3 · 4
3+2

,
2 · 5+3 · 10
3+2

)

=

(

14
5

,8
)

.

2.2.7 We have

√

(x−0)2 +(1−2)2 = 2 =⇒
√

x2 +1= 2 =⇒ x2 +1= 4 =⇒ x2 = 3 =⇒ x= ±
√
3.

2.2.8 The bug should travel along two line segments: first from (−1,1) the origin, and then from the origin to (2,1)
avoiding quadrant II altogether. For, if a> 0,b> 0 then the line segment joining (−b,0) and (a,0) lies in quadrant II, it is
√

a2+b2 long, and the bug spends an amount of time equal to

√

a2+b2
2

on this line. But a path on the axes from
(−b,0) to (a,0) is a+b units long and the bug spends an amount of time equal to a+b there. Thus as long as

a+b≤
a2+b2

2

the bug should avoid quadrant II completely. But by the Arithmetic-Mean-Geometric-Mean Inequality we have

2ab≤ a2 +b2 =⇒ (a+b)2 = a2 +2ab+b2 ≤ 2a2+2b2 =⇒ a+b≤
√
2
√

a2 +b2,

which means that as long as the speed of the bug in quadrant II is <
1√
2
then the bug will better avoid quadrant II. Since

1
2

<
1√
2
, this follows in our case.

2.2.9 (0,−3/4)

2.2.10 (2b−a,2a−b)

2.2.11 Without loss of generality assume that the rectangle ABCD has vertices at A(0,0), B(u,0),C(u,v) and D(0,v). Its
diagonals are AC and BD, which results in

AC =
√

(u−0)2+(v−0)2 =

√

u2+ v2 ,

and

BD =
√

(u−0)2+(0− v)2 =

√

u2 + v2 ,

demonstrating their equality.

2.2.12 Without loss of generality, assume that the parallelogram ABCD has vertices at A(0,0), B(u,0),C(u+w,v) and

D(w,v). The coordinates of the midpoint of the segment AC are
(

u+w
2

,
v
2

)

, which are the coordinates of the midpoint

of BD, demonstrating the result.

2.2.13 Its x coordinate is
1
2
−
1
8

+
1
32
− · · ·=

1
2

1− −14
=
2
5

.

Its y coordinate is

1−
1
4

+
1
16
− · · ·=

1
1− −14

=
4
5

.

Therefore, the fly ends up in
(

2
5

,
4
5

)

.

Here we have used the fact the sum of an infinite geometric progression with common ratio r, with |r| < 1 and first term a
is

a+ar+ar2+ar3+ · · ·=
a

1− r
.

2.2.14 ( 3a+b4 , 3b+a4 )

2.2.15 (a,b) ; (−a,−b) ; (a,−b)

2.2.16 It is enough to prove this in the case when a,b,c,d are all positive. To this end, put O= (0,0), L= (a,b) and
M = (a+c,b+d). By the triangle inequality OM ≤OL+LM, where equality occurs if and only if the points are collinear.
But then

√

(a+ c)2+(b+d)2 = OM ≤ OL+LM =

√

a2 +b2+

√

c2 +d2 ,

and equality occurs if and only if the points are collinear, that is
a
b

=
c
d
.

2.2.18 Use the above generalisation of Minkowski’s Inequality and the fact that 172+1442 = 1452. The desired value is
S12.

2.3.2 (x−2)2 +(y−3)2 = 2

2.3.3 We must find the radius of this circle. Since the radius is the distance from the centre of the circle to any point on
the circle, we see that the required radius is

√

(−1−1)2 +(1−2)2 =
√
5≈ 2.236.

The equation sought is thus
(x+1)2 +(y−1)2 = 5.

2.3.4 (1) x2 +(y−1)2 = 36,C= (0,1),R= 6. (2) (x+2)2 +(y−1)2 = 25,C= (−2,1),R= 5, (3)
(x+2)2+(y−1)2 = 10,C= (−2,1),R=

√
10, (4) (x−2)2 + y2 = 12,C= (2,0),R= 2

√
3 (5)

(x+ 1
2 )2+(y− 3

2 )2 = 5
8 ,C= (− 12 , 32 ),R=

√

5
8 , (6) (x+ 1√

3
)2+(y−

√
3
3 )2 = 5

3 ,C= (−
√
3
3 ,
√
3),R=

√

5
3

2.3.6 (x−1)2 +(y−3)2 = 5

2.3.7 (x− 9
10 )2+(y− 1

10 )2 = 221
50

2.3.9 This is asking to draw the circles x2 + y2 = 100, (x+4)2+ y2 = 4, (x−4)2 + y2 = 4, x2 +(y+4)2 = 4, all in the
same set of axes.The picture appears in figure F.1.

Figure F.1: Problem 2.3.9.

2.4.2 This is asking to draw the circle x2 + y2 = 100, and the semicircles y=
√

4− (x+4)2, y=
√

4− (x−4)2,

y= −4−
√

4− x2, all in the same set of axes.The picture appears in figure F.1.

Figure F.2: Problem 2.4.2.

2.5.2 7
9

2.5.3 −
b
a

2.5.4 −6

2.5.5 y=
x
4

+
1
4

2.5.6 y= −x+b+a

2.5.7 y= (a+b)x−ab

2.5.8 m= 2
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2.5.10 Let (x,0) be the coordinates of S. Since the slope of the line segment SM is
1
2
, we have

2− x
2−0

=
1
2

=⇒ x= 1,

whence S is the point (1,0). Let (a,0) be the coordinates of A. Since SM =MA, we have

√

(a−2)2+(0−2)2 =
√

(1−2)2+(0−2)2 =⇒ (a−2)2+4= 5 =⇒ a ∈ {1,3}.

This means that A is the point (3,0). Let B be point (0,y). Since A,B,M are collinear, we may compute the slope in two
different ways to obtain,

y−2
0−2

=
2−0
2−3

=⇒ y−2= 4 =⇒ y= 6.

Thus B is the point (0,6).

2.5.11 Let required point be (x,y). The distance of this point to its projection on the x-axis is |y| and similarly, the
distance of this point to its projection on the x-axis is |x|. We need

|y| = |x| =⇒ |6−2x| = |x| =⇒ 6−2x= x or 6−2x= −x.

The first case gives x= 2 and the point is (2,2), and the second case gives x= 6 and the point is (6,−6).

2.5.12 x= 3

2.5.13 This is asking to graph the lines x=−1, x= 1, y= −1, y= 1, y=−x, and y= x, all on the same set of axes. The
picture appears in figure F.3.

Figure F.3: Problem 2.5.13.

2.6.1 y= 4x−14

2.6.2 y=
b
a
x

2.6.3 y= −
1
4
x+

29
4

2.6.4 y= −
a
b
x+b+

a2

b

2.6.5 y= 3
4 x−9

2.6.6 y= − 43 x+16

2.6.7 Notice that there is a radius of the circle connecting (0,0) and ( 12 ,
√
3
2 ). The line passing through these two points

is y=
√
3x. Hence, since the tangent line is perpendicular to the radius at the point of tangency, the line sought is of the

form y= −
√
3
3
x+ k. To find k observe that

√
3
2

=−
3
4

+ k =⇒ k=
3
√
3
4
. Finally, the desired line is

y= −
√
3
3
x+

3
√
3
4
.

2.6.8 L1 : y= (a+b)x+1−a−b, L2 : y=−
x

a+b
+
a+b+1
a+b

2.6.9 (1) t = 4/3, (2) t = 6/7, (3) t = 1/2, (4) t = 3, (5) t =−7, (6) t = 7/9, (7) t = 7/4, (8) (3,−1)

2.6.10 We have

1. If Lt passes through (−2,3) then

(t−2)(−2)+(t+3)(3)+10t−5= 0,

from where t = − 8
11 . In this case the line is

−
30
11

x+
25
11

y−
135
11

= 0.

2. Lt will be parallel to the x-axis if the x-term disappears, which necessitates t−2= 0 or t = 2. In this case the
line is

y= −3.

3. Lt will be parallel to the y-axis if the y-term disappears, which necessitates t+3= 0 or t =−3. In this case
the line is

x= −7.

4. The line x−2y−6= 0 has gradient 12 and Lt has gradient
2−t
t+3 . The lines will be parallel when

2−t
t+3 = 1

2
or t = 1/3. In this case the line is

−
5
3
x+

10
3
y−

5
3

= 0.

5. The line y= − 14 x−5 has gradient−
1
4 and Lt has gradient

2−t
t+3 . The lines will be perpendicular when

2−t
t+3 = 4 or t =−2. In this case the line is

−4x+ y−25 = 0.

6. If such a point existed, it would pass through the horizontal and vertical lines found above, thus
(x0 ,y0) = (−7,−3) is a candidate for the point sought. That (−7,−3) passes through every line Lt , no
matter the choice of t is seen from

(t−2)(−7)+(t+3)(−3)+10t−5=−7t+14−3t−9+10t−5= 0.

2.6.12
√
2

2.6.13
√

1+a2

2.6.14 The radius of the circle is the distance from the centre to the tangent line. This radius is then

r =

∣
∣
∣
∣
∣
∣

3−2 · 4+3
√

12+(−2)2

∣
∣
∣
∣
∣
∣

=
2√
5

.

The desired equation is

(x−3)2 +(y−4)2 =
4
5

.

2.6.15 Let MA
(
b
2 , c2

)

, MB
(
a
2 , c2

)

, MC
(
a+b
2 ,0

)

be the respective midpoints of the sides BC, CA and AB. The
equations of the straight line containing the medians are then

←−→
AMA : y=

c
2

b
2 −a

x+
ca

2a−b
=

c
b−2a

x+
ca

2a−b
,

←−→BMB : y=
c
2

a
2 −b

x+
cb

2b−a
=

c
a−2b

x+
cb

2b−a
,

and
←−→
CMC : y=

c

− a+b2
x+ c=−

2c
a+b

x+ c.

Since we are supposing the triangle to be non-degenerate (that is, it isn’t “flat”),
←−→
AMA and

←−→BMB must intersect. Then

c
b−2a

x+
ca

2a−b
=

c
a−2b

x+
cb

2b−a
=⇒ x=

a+b
3

.

To find the value of the coordinate y, we substitute x=
a+b
3

in any of these three lines, say the first:

y=
c

b−2a
x+

ca
2a−b

=
c

b−2a
·
a+b
3

+
ca

2a−b
=

c
3

.

To conclude, we must shew that the point
(
a+b
3

,
c
3

)

lies on the line
←−→
CMC , that is, we must verify that

c
3
?
= −

2c
a+b

·
a+b
3

+ c,

which we leave to the reader.

2.6.16 Let HA , HB and HC be the feet of the altitudes from A to BC, from B toCA and fromC to AB, respectively. As the
altitudes are perpendicular to the sides, the respective slopes of

←−→
AHA ,

←−→BHB ,
←−→
CHC , will be the opposite of the reciprocals of

the slopes of the straight lines BC,CA, AB. We then find the equations

←−→
AMA : y=

b
c
x−

ab
c

,

←−→BMB : y=
a
c
x−

ab
c

,

and
←−→
CMC : x= 0.

Since we are supposing the triangle to be non-degenerate (that is, it isn’t “flat”),
←−→
AMA ,

←−→BMB must intersect. Hence x= 0
and

b
c
x−

ab
c

=
a
c
x−

ab
c

=⇒ x= 0,

and since the triangle is non-degenerate, a '= b. Hence, y=−
ab
c
. Obviously

(

0,−
ab
c

)

is also on LCMC
, demonstrating

the result.
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2.6.17 Let
←−→
A′B′ ,

←−→
B′C′ ,

←−→
C′A′ be the perpendicular bisectors to AB, BC andCA. Then

←−→
A′B′ : x=

a+b
2

,

←−→
B′C′ : y=

b
c
x,

←−→
C′A′ : y=

a
c
x.

Since
←−→
A′B′ ,

←−→
B′C′ must intersect, x=

a+b
2

and

y=
b(a+b)
2c

.

Since

(

a+b
2

,
ab+ c2

2c

)

also lies on
←−→
C′A′ , the result is obtained.

2.6.18 Suppose, without loss of generality, that the square ABCD has vertices at A(0,0), B(a,0),C(a,a) and D(0,a). The
slopes of the straight lines

←→
AD and

←→
BC are 1 and −1, from where the result is achieved.

2.7.1

1. This is y= (−x+1)− (−x)+(−x−1) =−x.

2. This is y= (−x+1)− (−x)+(x+1) = x+2.

3. This is y= (−x+1)− (+x)+(x+1) =−x+2.

4. This is y= (x−1)− (+x)+(x+1) = x.

5. The graph ofC appears in figure F.4.

1
2
3
4
5
6
7

-1
-2
-3
-4
-5
-6
-7
-8

1 2 3 4 5 6 7-1-2-3-4-5-6-7-8

Figure F.4: Problem 2.7.1.

2.7.2 The graph appears in figure F.5.

1
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7
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-3
-4
-5
-6
-7
-8

1 2 3 4 5 6 7-1-2-3-4-5-6-7-8

Figure F.5: Problem 2.7.2.

2.7.3 This is the curve

y=
|x|+ x
2

=







x if x≥ 0,

0 if x< 0.

The graph appears in figure F.6.

1
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-3
-4
-5
-6
-7
-8

1 2 3 4 5 6 7-1-2-3-4-5-6-7-8

Figure F.6: Problem 2.7.3.

2.7.4 The set is composed of four segments of a circle inside the circle of equation x2 + y2 = 16 and bounded by the
lines of equation y= x+4, y= x−4, y= −x+4 and y= −x−4. The graph appears in figure F.7.

1
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4
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-3
-4
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-6
-7
-8

1 2 3 4 5 6 7-1-2-3-4-5-6-7-8

Figure F.7: Problem 2.7.4.

2.8.2 By the preceding exercise the focus is ( 14 ,0) and the directrix is x=− 14 .

2.8.3 If (x,y) is an arbitrary point on this parabola we must have

|− x− y|
√

1+(−1)2
=
√

(x−1)2 +(y−1)2

Squaring and rearranging, the desired equation is

x2 + y2 −2xy−4x−4y+4 = 0.

2.8.5 The distance of (x,y) to (2,3) is
√

(x−2)2 +(y−3)2. The distance of (x,y) to the line x=−4 is
|x− (−4)| = |x+4|. We need

√

(x−2)2 +(y−3)2 = |x+4| ⇐⇒ (x−2)2 +(y−3)2 = (x+4)2 ⇐⇒ x=
y2

12
−
y
2
−
1
2

,

from where the desired curve is a parabola.

2.8.6 Put x> 0 and A= (0,0), B=

(

x,
x2

2

)

yC =

(

−x,
x2

2

)

. Then

AB= BC =⇒

√
√
√
√(x−0)2 +

(

x2

2
−0

)2
=

√
√
√
√(x− (−x))2 +

(

x2

2
−
x2

2

)2
=⇒ x2

(

1+
x2

4

)

= 4x2 =⇒ x= 2
√
3.

The points are A(0,0), B(2
√
3,6) and C(−2

√
3,6).
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3.1.1 We have
f (0)+ f (1)+ f (2) =

0−1
02+1

+
1−1
12+1

+
2−1
22+1

= −1+0+
1
5

=−
4
5

.

Also,

f (0+1+2) = f (3) =
3−1
32+1

=
1
5

.

Clearly then f (0)+ f (1)+ f (2) '= f (0+1+2).

Now,

f (x) =
1
x

=⇒ x2 − x= x2 +1 =⇒ x= −1.

Also,
f (x) = x =⇒ x−1 = x3 + x =⇒ x3 = −1 =⇒ x= −1.

3.1.2 There are 23 = 8 such functions:

1. f1 given by f1(0) = f1(1) = f1(2) =−1

2. f2 given by f2(0) = 1, f2(1) = f2(2) = −1

3. f3 given by f3(0) = f3(1) = −1, f3(2) = 1

4. f4 given by f4(0) =−1, f4(1) = 1, f4(2) =−1

5. f5 given by f5(0) = f5(1) = f5(2) = 1

6. f6 given by f6(0) =−1, f6(1) = f6(2) = 1

7. f7 given by f7(0) = f7(1) = 1, f7(2) = −1

8. f8 given by f8(0) = 1, f8(1) = −1, f8(2) = 1

3.1.3 There are 32 = 9 such functions:

1. f1 given by f1(−1) = f1(1) = 0

2. f2 given by f2(−1) = f2(1) = 1

3. f3 given by f3(−1) = f3(1) = 2

4. f4 given by f4(−1) = 0, f4(1) = 1

5. f5 given by f5(−1) = 0, f5(1) = 2

6. f6 given by f6(−1) = 1, f6(1) = 2

7. f7 given by f7(−1) = 1, f7(1) = 0

8. f8 given by f8(−1) = 2, f8(1) = 0

9. f9 given by f9(−1) = 2, f9(1) = 1

3.1.4 4x−2

3.1.5 6x2 +2h2−6

3.1.6

1. True. f
( a
b

)

=
1
a
b

=
b
a

=
1
a
·
1
1
b

=
f (a)
f (b)

.

2. False. For example, f (1+1) = f (2) =
1
2
, but f (1)+ f (1) =

1
1

+
1
1

= 2.

3. True. f (a2) =
1
a2

=

(

1
a

)2
= ( f (a))2.

3.1.7 a(3) = 6; x2 + x−6; 24−11x−10x2+2x3 + x4

3.1.8 7, x2 −2x−1, x4 −4x3 +8x+2

3.1.9 We must look for all x ∈ Dom( f ) such that s(x) = x. Thus

s(x) = x =⇒ x5 −2x3 +2x= x

=⇒ x5 −2x3 + x= 0

=⇒ x(x4 −2x2 +1) = 0

=⇒ x(x2 −1)2 = 0

=⇒ x(x+1)2 (x−1)2 = 0.

The solutions to this last equation are {−1,0,1}. Since−1 '∈ Dom(s), the only fixed points of s are x= 0 and x= 1.

3.1.10 h(x−1) =−11+7x− x2; h(x) = −5+5x− x2; h(x+1) =−1+3x− x2

3.1.11 f (x) = x2 −2x+1; f (x+2) = x2 +2x+1; f (x−2) = x2 −6x+9

3.1.12 Rename the independent variable, say h(1− s) = 2s. Now, if 1− s= 3x then s= 1−3x. Hence

h(3x) = h(1− s) = 2s= 2(1−3x) = 2−6x.

3.1.13 Consider the function p :R→R, with

p(x) = (1− x2 + x4)2003 = a0 +a1x+a2x
2 + · · ·+a8012x

8012 .

Then

1. a0 = p(0) = (1−02+04)2003 = 1.

2. a0+a1 +a2+ · · ·+a8012 = p(1) = (1−12+14)2003 = 1.

3.

a0−a1 +a2−a3+ · · ·−a8011+a8012 = p(−1)

= (1− (−1)2+(−1)4 )2003

= 1.

4. The required sum is
p(1)+ p(−1)

2
= 1.

5. The required sum is
p(1)− p(−1)

2
= 0.

3.1.14 We have
[

f
(

27+y3
y3

)]

√

27
y

=

[

f
((

3
y
)3

+1
)]3

√

3
y

=






[

f
(
(
3
y
)3

+1
)]

√

3
y





3

= 53

= 125.

3.2.1

1. d(−2) ∈ [2;3].

2. d(−3) is undefined.

3. d(0) is undefined.

4. d(100) = 4.

3.2.2 The graph appears in figure F.8.
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-4

-3
-2

-1

0

1
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3

4
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-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure F.8: Problem 3.2.2: d.

3.2.3 Dom(Id) = R and Im (Id) = R.

3.2.4 Dom(AbsVal) = R and Im(AbsVal) = [0;+∞[.

3.2.5 Dom(Sq) = R and Im (Sq) = [0;+∞[.

3.2.6 Dom(Rt) = [0;+∞[ and Im(Rt) = [0;+∞[.

3.2.7 Dom(Sc) = [−1;1] and Im(Sc) = [0;1].

3.2.8 Dom(Rec) = R\{0} and Im(Rec) = R\{0}.
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3.2.9 The graph appears in figure F.9.

Figure F.9: Problem 3.2.9.

3.2.10 The first line segment L1 has slope

slopeL1 =
1− (−3)
−1− (−4)

=
4
3

,

and so the equation of the line containing this line segment is of the form y=
4
3
x+ k1 . Since (−1,1) is on the line,

1= −
4
3

+ k1 =⇒ k1 =
7
3
, so this line segment is contained in the line y=

4
3
x+

7
3
. The second line segment L2 has

slope

slopeL2 =
1−1

2− (−1)
= 0,

and so this line segment is contained in the line y= 1. Finally, the third line segment L3 has slope

slopeL3 =
−5−1
4−2

=−3,

and so this line segment is part of the line of the form y=−3x+ k2 . Since (1,2) is on the line, we have
2= −3+ k2 =⇒ k2 = 5, and so the line segment is contained on the line y=−3x+5. Upon assembling all this we see
that the piecewise function required is

f (x) =







4
3
x+

7
3

if x ∈ [−4;−1]

1 if x ∈ [−1;2]

−3x+5 if x ∈ [2;4]

3.3.2 1. R

2. [−5;5]

3. R

4. R

5. ]−∞; 1−
√
3[∪]1+

√
3;+∞[

6. R

7. ]−∞;−1[∪]−1;0]

8. ]−1;1[

9. {0}

3.3.4 [−2
√
3;0]∪ [2

√
3;+∞[.

3.3.5 x ∈]−∞; 1−
√
3[∪]1+

√
3;+∞[.

3.3.6 They are

1. {−1}

2. ∅

3. [0;2[∪]3;+∞[

4. ]3;+∞[

5. ]−∞;−3[∪]−2;0[∪]0;2[∪]3;+∞[

6. ]−3;−2[∪]0;2[∪]3;+∞[

7. R\{−3,−2,2,3}

3.4.1 1. [−4;2]

2. [−4;2]

3. ]−4;2]

4. [−4;−2[∪]−2;2[

5. −2

6. 0

7. 0

8. undefined

9. 5

10.
1
5

3.4.2 1){−4,−2,0,2,4}2) {0,1,4} 3) {0,1}. 4) {0,2}.

3.4.3 (1) 13, (2) 5981, (3) 10, (4) 1995

3.4.4 Observe that a+b= f (1) = 8. We have f (50) = 50a+b, g(50) = 50b+a and

f (g(50)) = f (50b+a) = 50ab+a2+b, g( f (50)) = g(50a+b) = 50ab+b2+a,

whence
28= f (g(50))−g( f (50)) = a2−b2− (a−b) = (a−b)(a+b−1)= 7(a−b) =⇒ a−b= 4.

Therefore,

ab=
(a+b)2− (a−b)2

4
=
64−16
4

= 12.

3.4.6 1) [0;+∞] 2) [0;2] 3) {0}. 4) [2;6]. 5)
√
√

4− x2 −2. 6)
√
6− x.

3.4.7 1) [0;
√
2] 2) ]−∞; 0] 3) [−2;0]. 4) {−

√
2,
√
2}. 5)

√
2+ x. 6) −

√

−
√

2− x2.

3.4.9
√
2
2

3.4.10 8
4+ x

3.4.11 x= 1/3.

3.4.12 ( f ◦ f )(x) = 4x2 −4x3 + x4 .

3.4.13 c= −3

3.4.14 If y= 0 then f (x+g(0)) = 2x+5. Hence

f (x) = f (x−g(0)+g(0))2(x−g(0)+5) = 2x−2g(0)+5.

We deduce that f (0) =−2g(0)+5 and hence,

−2g(0)+5= f (−g(y)+g(y)) = 2(−g(y))+ y+5 =⇒ g(y) = g(0)+
y
2

.

This gives

g(x+ f (y)) = g(0)+
x+ f (y)
2

= g(0)+
x+2y−2g(0)+5

2
=

x+2y+5
2

.

3.5.1 We have f [2](x) = f (x+1) = (x+1)+1= x+2, f [3](x) = f (x+2) = (x+2)+1= x+3 and so, recursively,
f [n](x) = x+n.

3.5.2 We have f [2](x) = f (2x) = 22x, f [3](x) = f (22x) = 23x and so, recursively, f [n](x) = 2nx.

3.5.3 Let x= 1. Then f (y) = y f (1). Since f (1) is a constant, we may let k = f (1). So all the functions satisfying the
above equation satisfy f (y) = ky.

3.5.4 From f (x)+2 f (
1
x

) = x we obtain f
(

1
x

)

=
x
2
−
1
2
f (x). Also, substituting 1/x for x on the original equation we

get
f (1/x)+2 f (x) = 1/x.

Hence

f (x) =
1
2x
−
1
2
f (1/x) =

1
2x
−
1
2

(

x
2
−
1
2
f (x)

)

,

which yields f (x) =
2
3x
−
x
3
.

3.5.5 We have

( f (x))2 · f
(
1− x
1+ x

)

= 64x,

whence

( f (x))4 ·
(

f
(

1− x
1+ x

)

)

)2
= 642x2 (I)

Substitute x by 1−x1+x . Then

f
(
1− x
1+ x

)2
f (x) = 64

(
1− x
1+ x

)

. (II)

Divide (I) by (II),

f (x)3 = 64x2
(
1+ x
1− x

)

,

from where the result follows.
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3.5.8 We have

f (2) = (−1)21−2 f (1) = 1−2 f (1)

f (3) = (−1)32−2 f (2) = −2−2 f (2)

f (4) = (−1)43−2 f (3) = 3−2 f (3)

f (5) = (−1)54−2 f (4) = −4−2 f (4)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

f (999) = (−1)999998−2 f (998) = −998−2 f (998)

f (1000) = (−1)1000999−2 f (999) = 999−2 f (999)

f (1001) = (−1)10011000−2 f (1000) = −1000−2 f (1000)

Adding columnwise,

f (2)+ f (3)+ · · ·+ f (1001) = 1−2+3− · · ·+999−1000−2( f (1)+ f (2)+ ·+ f (1000)).

This gives
2 f (1)+3( f (2)+ f (3)+ · · ·+ f (1000))+ f (1001)=−500.

Since f (1) = f (1001)we have 2 f (1)+ f (1001) = 3 f (1). Therefore

f (1)+ f (2)+ · · ·+ f (1000) = −
500
3

.

3.5.9 1

3.5.10 Set a= b= 0. Then ( f (0))2 = f (0) f (0) = f (0+0) = f (0). This gives f (0)2 = f (0). Since f (0) > 0 we can
divide both sides of this equality to get f (0) = 1.

Further, set b= −a. Then f (a) f (−a) = f (a−a) = f (0) = 1. Since f (a) '= 0, may divide by f (a) to obtain

f (−a) =
1
f (a)

.

Finally taking a= b we obtain ( f (a))2 = f (a) f (a) = f (a+a) = f (2a). Hence f (2a) = ( f (a))2

3.6.1 Assume g(s1) = g(s2). Then

g(s1) = g(s2) =⇒ 2s1 +1 = 2s2+1

=⇒ 2s1 = 2s2

=⇒ s1 = s2

We have shewn that g(s1) = g(s2) =⇒ s1 = s2, and the function is thus injective.

To prove that g is surjective, we must prove that (∀ b ∈ R) (∃a) such that g(a) = b.We choose a so that a=
b−1
2

. Then

g(a) = g
(
b−1
2

)

= 2
(
b−1
2

)

+1= b−1+1= b.

Our choice of a works and hence the function is surjective.

3.6.4 We must shew that there is a solution x for the equation f (x) = b,b∈ R\{2}. Now

f (x) = b =⇒
2x
x+1

= b =⇒ x=
b

2−b
.

Thus as long as b '= 2 there is x ∈ R with f (x) = b. Since there is no x such that g(x) = 2 and 2 ∈ Target(g), g is not
surjective.

3.6.5 1. neither, f (−1) = f (1) so not injective. There is no a with f (a) = −1, so not surjective.

2. surjective, f (1) = f (−1) so not injective.

3. surjective, not injective.

4. injective, as proved in text, there is no a with f (a) = −1, so not surjective.

5. neither, |1|= |−1| so not injective, there is no a with |a|= −1, so not surjective.

6. injective, non-surjective since, say, there is no a with−|a| = 1.

7. surjective, non-injective since, say, |−1|= |1| but −1 '= 1.

8. bijective.

3.7.1 Since c(c−1 (x)) = x, we have
c−1(x)

c−1 (x)+2
= x. Solving for c−1 (x) we obtain c−1(x) =

2x
1− x

= −2+
2

1− x
.

The inverse of c is therefore

c−1 :
R\{1} → R\{−2}

x "→ −2+
2

1− x

.

3.7.2 f−1 : R→ reals, f−1(x) = 3
√

x−
2

3.7.3 f :R\{1}→ R\{1}, f−1(x) =
x3 +2
x3 −1

.

3.7.4 ( f ◦ g)−1(1) = (g−1 ◦ f−1)(1) = g−1( f−1(1)) = g−1(3) = 2.

3.7.5 Since x2 −4x+5= (x−2)2 +1, consider I1 = ]−∞; 2] and I2 = [2;+∞[.

3.7.6

1. The first piece of f is a line segment with endpoints at (−5,5), (0,−1), and whose slope is−
6
5
. Thus the

equation of f os f (x) =−
6
5
x−1. Putting y= −

6
5
x−1 and solving for x we obtain x=−

5
6
y−

5
6
. We

deduce that f−1(x) =−
5
6
x−

5
6
. For x ∈ [−5;0],−1≤ f (x) ≤ 5, and hence the formula for f−1 is only

valid for −1≤ x≤ 5.

2. The second piece is a line segment with endpoints at (0,−1), (5,−3), which has slope−
2
5
. The equation of f

is f (x) =−
2
5
x−1. Putting y=−

2
5
x−1 and solving for x, we obtain x= −

5
2
y−

5
2
. We deduce that

f−1(x) = −
5
2
x−

5
2
. For x ∈ [0;5],−3≤ f (x) ≤−1, and so this formula for f−1 is only valid for

−3≤ x≤−1.

3. The graph of f−1 appears in figure F.10.
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Figure F.10: Problem 3.7.6.

3.7.7 We have

1. The expression under the cubic root must not be 0. Hence x5 '= 1 and the natural domain is R\{1}.

2. Put
y=

1
3√x5 −1

.

Now exchange x and y and solve for y:

x=
1

3
√

y5 −1
=⇒ x3 (y5 −1) = 1 =⇒ y=

5
√

x3 +1
x3

.

Hence

f−1(x) =
5
√

x3 +1
x3

.

3. As x varies in R\{1}, the expression
1

3√x5 −1
assumes all positive and negative values, but it is never 0.

Thus Im ( f ) = R\{0}. The expression for f−1(x) is undefined when x= 0. Hence the natural domain of
f−1 is R\{0}.

4. The function

f :
R\{1} → R\{0}

x "→
1

3√x5 −1

is a bijection with inverse

f−1 :
R\{0} → R\{1}

x "→ 5
√

x3 +1
x3

.

3.7.8 Since x≥ 0, f (x) = x2 −
1
4
has inverse f−1(x) =

√

x+
1
4
. The graphs of f and f−1 meet on the line y= x.

Hence we are looking for a positive solution to

x2 −
1
4

= x =⇒ x=
1+
√
2

2
.

3.7.9 1) Yes, f is a bijection. f−1( f (h(4))) = h(4) = 1, 2) No

3.7.10 3

3.7.11 t−1 :
[0;+∞[ → ]−∞; 1]

x "→ 1− x2

3.7.12 Either a= 1,b= 0 or a= −1 and b arbitrary.
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3.7.18 We have f−1 :R→R, with

f−1(x) =







x
2

if x≤ 0

√
x if x> 0

The graph of f−1 appears in figure F.11.
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Figure F.11: Problem 3.7.18.

3.7.20 The inverse of

f :
[0;+∞[ → [0;+∞[

x "→ x2

is

f−1 :
[0;+∞[ → [0;+∞[

x "→
√
x

.

In diagram F.12, each rectangleVk has its lower left corner at (0,
k
10

), base
√

k
10 and height

1
10 . Each rectangle Hk has

lower left corner at (
k
10

,0), base 1
10 and height (

k
10 )2. The collective area of these rectangles is

1
10

((

1
10

)2
+

√

1
10

+

(

2
10

)2
+

√

2
10

+

(

3
10

)2
+

√

3
10

+ · · ·+
(

9
10

)2
+

√

9
10

)

Since these grey rectangles do not intersect with the green squares on the corners, their collective area is less than the area

of the unit square minus these smaller squares: 1−
1
100
−

4
100

=
95
100

. We thus conclude that

1
10

(
(
1
10

)2
+

√

1
10

+

(
2
10

)2
+

√

2
10

+

(
3
10

)2
+

√

3
10

+ · · ·+
(
9
10

)2
+

√

9
10

)

<
95
100

.

H1 H2 H3 H4 H5 H6 H7 H8 H9

V1

V2

V3

V4

V5

V6

V7

V8

V9

Figure F.12: Problem 3.7.20.

4.1.2 y= f (x−2)−1= (x−2)2 −
1

x−2
−1

4.1.3 Yes.

4.2.2 The required equation is y=
1

2x+2
−1.

4.2.3 Observe that f is the function

f :
[−4;4] → [−2;4]

x "→ f (x)
.

Let a be the function with curve y= 2 f (x). Then a :
[−4;4] → [−4;8]

x "→ a(x)
.
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Figure F.13: y= 2 f (x).

Let b be the function with curve y= f (2x). Then b :
[−2;2] → [−2;4]

x "→ b(x)
.
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Figure F.14: y= f (2x).

Let c be the function with curve y= 2 f (2x). Then c :
[−2;2] → [−4;8]

x "→ c(x)
.
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Figure F.15: y= 2 f (2x).
4.3.1 Proceeding successively:

1. A reflexion about the x-axis gives the curve

y=− f (x) = |x|−2= a(x),

say.
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2. A translation 3 units up gives the curve

y= a(x)+3= |x|+1= b(x),

say.

3. A horizontal stretch by a factor of 34 gives the curve

y= b
(

4
3
x
)

=

∣
∣
∣
∣

4x
3

∣
∣
∣
∣
+1=

4
3
|x|+1= c(x),

say. Observe that the resulting curve is

y= c(x) = b
(
4
3
x
)

= a
(
4
3
x
)

+3= − f
(
4
3
x
)

+3.

4.3.2 (1) y= −(x+1)(x+2)−2 (2) y= −2x−7 (3) y= |1− x|−1

4.3.3 Here is the graph of x "→ f (x+1).
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Figure F.16: y= f (x+1).

Here is the graph of x "→ f (−x+1).
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Figure F.17: y= f (1− x).

Here is the graph of x "→ − f (−x+1).
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Figure F.18: y=− f (1− x).

4.4.1 Here is the even completion.

Figure F.19: Even completion.
Here is the odd completion.

Figure F.20: Odd Completion.

4.4.2 Since f is even, f (2) = 3, f (−3) = 2. Since g is odd, g(2) =−2, g(−3) = −4. Thus

( f +g)(2) = f (2)+g(2) = 3+(−2) = 1, (g ◦ f )(2) = g( f (2)) = g(3) = 4.

4.4.3 Since f is odd, f (−0) =− f (0). But f (−0) = f (0), giving f (0) =− f (0), that is, 2 f (0) = 0 which implies that
f (0) = 0.

4.4.4 The constant functionR→ {0} with assignment rule f : x "→ 0 is both even and odd. It is the only such function,
for if g were both even and odd and g(x) = a '= 0 for some real number x, then we would have
a= g(x) = g(−x) = −g(x) =−a, implying that a= 0.

4.4.5 We will shew that A= {0} and consequently, B= { f (0)}. Let x ∈ A. If x '= 0 then −x must also be in A because f
is even. Thus then x '= −x and f (x) = f (−x), which means that f in not injective and hence not invertible, a contradiction.
This means that the only element of A is x= 0. In turn, since f is surjective, B must have exactly one element, which
perforce must be f (0).
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4.5.1 Here are the graphs of x "→ 2 f (x) and x "→ f (2x).
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Figure F.21: y =
2 f (x)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Figure F.22: y =
f (2x)

Here are the graphs of x "→ f (−x) and x "→ − f (x).
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Figure F.23: y =
f (−x)
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Figure F.24: y =
− f (x)

Here are the graphs of x "→ − f (−x) and x "→ f (|x|).
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Figure F.25: y =
− f (−x)
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Figure F.26: y =
f (|x|)

Here are the graphs of x "→ | f (x)| and x "→ f (−|x|).
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Figure F.27: y =
| f (x)|
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Figure F.28: y =
f (−|x|)

4.5.2 The graphs appear below.

Figure F.29:
y = g(x) =
x2−1

Figure F.30:
y = |g(x)| =
|x2−1|

4.5.3 The graph appears in figure F.31.
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Figure F.31: Problem 4.5.3.
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4.5.4 Observe that y=
√

x2 +2x+3 is an upper semicircle and that

y=

√

−x2 +2x+3 =⇒ x2 −2x+ y2 = 3 =⇒ (x−1)2 + y2 = 4,

from where the semicircle has radius 2 and centre at (1,0), as appears in figure F.32.
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Figure F.32: Problem 4.5.4.

The graph of y=
√

−x2 +2|x|+3 appears in figure F.33.
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Figure F.33: Problem 4.5.4.

The graph of of y=
√

−x2 −2|x|+3 appears in figure F.34.
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Figure F.34: Problem 4.5.4.

4.5.5 Here is the graph of y= (x−1)2 −2.
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Figure F.35: y= (x−1)2−2.

Here is the graph of y= |(x−1)2−2|.
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Figure F.36: y= |(x−1)2−2|.

Here is the graph of y= (|x|−1)2−2.
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Figure F.37: y= (|x|−1)2−2.

Observe that (−|x|−1)2 = (−1)2 (|x|+1)2 = (|x|+1)2. Here is the graph of y= (|x|+1)2−2.
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Figure F.38: y= (|x|+1)2−2.
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4.5.10 Here is the graph of y= 1− x.
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Figure F.39: y= 1− x.

Here is the graph of y= |1− x|.
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Figure F.40: y= |1− x|.

Here is the graph of y= 1− |1− x|.
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Figure F.41: y= 1− |1− x|.

Here is the graph of y= |1− |1− x||.
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Figure F.42: y= |1− |1− x||.

Here is the graph of y= 1− |1− |1− x||.
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Figure F.43: y= 1− |1− |1− x||.

Here is the graph of y= |1− |1− |1− x|||.
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Figure F.44: y= |1− |1− |1− x|||.

Here is the graph of y= 1− |1− |1− |1− x|||.
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Figure F.45: y= 1− |1− |1− |1− x|||.

Here is the graph of y= |1− |1− |1− |1− x||||.
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Figure F.46: y= |1− |1− |1− |1− x||||.

4.5.12 Notice that the graph of y= f (ax) is a horizontal shrinking of the graph of y= f (x). Put g(x) = f (ax). Since
g(4/3) = 0 we must have 4a/3=−2 =⇒ a= −3/2, so the point (−2,0) on the original graph was mapped to the point
(4/3,0) on the new graph. Hence the point (3,0) in the old graph gets mapped to (−2,0) and soC =−2.

4.6.1 For x '= 1 we have f (x) =
x2 −1
x−1

= x+1. Since f (1−) = 2 and f (1+) = 2 we need a= f (1) = 2.

4.6.2 Take, among many possible examples, the function f : R→ R with f (x) =
1

x3 − x
for x '∈ {−1,0,1} and

f (−1) = f (0) = f (1) = 0.
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4.6.3 We have f (1−) = 0 and f (1+) = 2+3a. We need then 0= 2+3a or a=−
2
3
.

4.6.4 For x '= 1 we have f (x) =
xn −1
x−1

= xn−1 + xn−2 + · · ·+ x2 + x+1. Since f (1−) = n and f (1+) = n we need

a= f (1) = n.

4.6.5 Examine the assignment rule x "→ ?x3@.

4.7.1 Examine the assignment rule r(x) = ?
1
x
@,x '= 0.

4.7.2 Examine the assignment rule x "→ ?
x−1
2
@.

4.7.3 Examine the assignment rule x "→ ?
√

|x|@.

4.7.4 The function is periodic of period 1. If x ∈ [0;1] then

||x||=min(x,1− x).

Its graph appears in figure F.47.
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Figure F.47: Problem 4.7.4.

4.7.5 Its graph will jump each time 2x= n, an integer, that is, when x=
n
2
, which means it jumps at every fraction with

denominator 2. Its graph appears in figure 4.7.5.
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Figure F.48: Problem 4.7.5.

4.7.6 The assertion is false. For example, if x= 2.1 then {2.1}2 = 0.12 = 0.01 but
{

2.12
}

= {4.41}= 0.41

4.7.8 The formula x "→
1

!x"−#x$
is not defined for x ∈ Z. If x ∈ R\Z then

1
!x"−#x$

= 1. Thus the graph

consists of the horizontal line of equation y= 1 but with punctures at the points (n,1), n ∈ Z.

4.7.9 First consider n ∈ Z. We have

#x$→







n−1 as x→ n−

n as x→ n+

Then

#x$+
√

x−#x$→







n−1+
√

n− (n−1) = n as x→ n−

n+
√
n−n = n as x→ n+

We deduce that f is continuous at the integers. Since f is clearly continuous at non-integral points, we conclude that f is
everywhere continuous.

5.2.1 To prove that x "→ |x| is convex, we use the triangle inequality theorem 62 and the fact that |λ |= λ , |1−λ |= 1−λ
for λ ∈ [0;1]. We have

AbsVal(λa+(1−λ )b) = |λa+(1−λ )b|

≤ |λa|+ |(1−λ )b|

= λ |a|+(1−λ )|b|

= λAbsVal(a)+(1−λ )AbsVal(b),

whence x "→ |x| is convex. As AbsVal(−x) = |−x| = |x|= AbsVal(x), the absolute value function is an even function. For
a< b< 0,

AbsVal(b)−AbsVal(a)
b−a

=
|b|− |a|
b−a

=
−b− (−a)
b−a

= −1< 0,

x "→ |x| is a strictly decreasing function for x< 0. Similarly, for 0< a< b

AbsVal(b)−AbsVal(a)
b−a

=
|b|− |a|
b−a

=
b−a
b−a

= 1> 0,

and so x "→ |x| is a strictly increasing function for x> 0. Also, assume that y ∈ Im(AbsVal). Then ∃x ∈ R with

y= AbsVal(x) = |x|, which means that y≥ 0 and so Im(AbsVal) = [0;+∞[.

To obtain the graph of x "→ |x| we graph the line y= −x for x< 0 and the line y= x for x≥ 0.

5.4.2 (i) y= (x+3)2 vertex at (−3,0), (ii) y= (x+6)2 −1 vertex at (−6,−1), (iii) y= (x+1)2 −16, vertex at
(−1,−16) (iv) y=−(x− 1

2 )2 + 1
4 , vertex at (

1
2 , 14 ) (v) y= 2(x−3)2 +5, vertex at (3,5), (vi) 3(x− 1

3 )2 + 5
9 , vertex

at ( 13 , 59 ) (vii) y= 1
5 (x+5)2 +8, vertex at (−5,8)

5.4.3 (3,−9)

5.4.4 y= 2x2 −1

5.4.5 y= −2(x+3)(x−4)

5.4.6 Observe that x(1− x) =
1
4
− (x−

1
2

)2 ≤
1
4
and that for x ∈ [0,1],0≤ x(1− x). Thus if all these products are > 1

4

we obtain
1
43

< a(1−b)b(1− c)c(1−a) = a(1−a)b(1−b)c(1− c)≤
1
43
, a contradiction. Thus one of the products

must be≤ 1
4 .

5.4.7 P(x) = 21025−25(x−1)2; $21025

5.4.8 We have

|x2 −2x| = |x2+1| ⇐⇒ (x2 −2x= x2 +1) or (x2 +2x=−x2 −1)

⇐⇒ (−2x−1 = 0) or (2x2 +2x+1= 0)

⇐⇒
(

x=−
1
2

)

or
(

x= −
1
2
±

i
2

)

,

whence the solution set is
{

−
1
2

}

.

5.4.9 We have

(x2 +2x−3)2 = 2 ⇐⇒ (x2 +2x−3 =
√
2) or (x2 +2x−3= −

√
2)

⇐⇒ (x2 +2x−3−
√
2= 0) or (x2 +2x−3+

√
2= 0)

⇐⇒



x=
−2±

√

4−4(−3−
√
2)

2





or



x=
−2±

√

4−4(−3+
√
2)

2





⇐⇒

(

x=
−2±

√

16+4
√
2

2

)

or

(

x=
−2±

√

16−4
√
2

2

)

⇐⇒ (x=−1±
√

4+
√
2) or (x=−1±

√

4−
√
2).

Since each of 4±
√
2> 0, all four solutions found are real. The set of solutions is

{

−1±
√

4±
√
2
}

.

5.4.10

x3 − x2 −9x+9= 0 ⇐⇒ x2 (x−1)−9(x−1) = 0

⇐⇒ (x−1)(x2 −9) = 0

⇐⇒ (x−1)(x−3)(x+3) = 0

⇐⇒ x ∈ {−3,1,3}.
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5.4.11

x3 −2x2 −11x+12= 0 ⇐⇒ x3 − x2 − x2 + x−12x+12= 0

⇐⇒ x2(x−1)− x(x−1)−12(x−1) = 0

⇐⇒ (x−1)(x2 − x−12) = 0

⇐⇒ (x−1)(x+3)(x−4) = 0

⇐⇒ x ∈ {−3,1,4}.

5.4.12 x3 −1= (x−1)(x2 + x+1). If x '= 1, the two solutions to x2 + x+1= 0 can be obtained using the quadratic
formula, getting x= 1/2± i

√
3/2. There is only one real solution, namely x= 1.

5.4.13 The parabola has equation of the form x= a(y−k)2 +h= a(y−2)2 +1. Since when x= 3 we get y= 4, we have,

3= a(4−2)2+1 =⇒ 3= 4a+1 =⇒ a=
1
2

.

The equation sought is thus

x=
1
2

(y−2)2 +1.

5.4.14 Observe that
x−4 −10x−2 +9= (x−2 −9)(x−2 −1).

Thus
1
x2

= 9 and
1
x2

= 1, whence x= ± 1
3 and x= ±1.

5.4.15 Rearranging,
(t2−81)x= 3(t−9) =⇒ (t−9)(t+9)x= 3(t−9). (F.1)

If t = 9, (F.1) becomes 0= 0, which will be true for all values of x. If t = −9, (F.1) becomes 0=−54, which is clearly
nonsense. If t ∈ R\{−9,9}, then

x=
3

t+9

is the unique solution to the equation.

5.4.16 Let x and 50− x be the numbers. We seek to maximise the product P(x) = x(50− x). But
P(x) = 50x− x2 =−(x2 −50x) =−(x2 −50x+625)+625= 625− (x−25)2.We deduce that P(x) ≤ 625, as the square
of any real number is always positive. The maximum product is thus 625 occurring when x= 25.

5.4.17 If b,h are the base and height, respectively, of the rectangle, then we have 20= 2b+2h or 10= b+h. The area of
the rectangle is then A(h) = bh= h(10−h) = 10h−h2 = 25− (h−5)2. This shows that A(h)≤ 25, and equality occurs
when h= 5. In this case b= 10−h= 5. The height is the same as the base, and so the rectangle yielding maximum area is
a square.

5.4.18 1. The current production is 25×600= 15000 fruits.

2. If x more trees are planted, the production of each tree will be 600−15x.

3. Let P(x) be the total production after planting x more trees. Then
P(x) = (25+ x)(600−15x) = −15x2 +225x+15000.A good function modelling this problem is

P :
{x ∈ N|x≥ 25} → N

x "→ −15x2 +225x+15000
.

This model assumes that the amount of trees is never fewer than 25.

4. We maximise P(x) =−15x2 +225x+15000= 15000−15(x2−15x) = 15843.75−15(x−7.5)2. The
production is maximised if either 7 or 8 more trees are added, in which case the production will be
15843.75−15(7−7.5)2= 15840 fruits.

5.9.1 Such polynomial must have the form p(x) = a(x+1)(x−2)(x−3), and so we must determine a. But
−24= p(1) = a(2)(−1)(−2) = 4a. Hence a= −6.We thus find p(x) =−6(x+1)(x−2)(x−3).

5.9.2 There are ten such polynomials. They are p1(x) =−2(x−1)3 , p2(x) = −2(x−2)3, p3(x) = −2(x−3)3,
p4(x) = −2(x−1)(x−2)2, p5(x) =−2(x−1)2(x−2), p6(x) = −2(x−1)(x−3)2, p7(x) =−2(x−1)2(x−3),
p8(x) = −2(x−2)(x−3)2, p9(x) =−2(x−2)2(x−3), p10(x) =−2(x−1)(x−2)(x−3).

5.9.3 This polynomial must have the form c(x) = a(x−1)(x+3)2. Now 10= c(2) = a(2−1)(2+3)2 = 25a, whence

a=
2
5
. The required polynomial is thus c(x) =

2
5

(x−1)(x+3)2 .

5.9.4 Put g(x) = p(x)− x2 . Observe that g is also a cubic polynomial with leading coefficient 1 and that g(x) = 0 for
x= 1,2,3. This means that g(x) = (x−1)(x−2)(x−3) and hence p(x) = (x−1)(x−2)(x−3)+ x2 . This yields
p(4) = (3)(2)(1)+42 = 22.

5.9.5 The polynomial g(x) = p(x)−7 vanishes at the 4 different integer values a,b,c,d. In virtue of the Factor Theorem,

g(x) = (x−a)(x−b)(x− c)(x−d)q(x),

where q(x) is a polynomial with integral coefficients. Suppose that p(t) = 14 for some integer t . Then
g(t) = p(t)−7= 14−7= 7. It follows that

7= g(t) = (t−a)(t−b)(t− c)(t−d)q(t),

that is, we have factorised 7 as the product of at least 4 different factors, which is impossible since 7 can be factorised as
7(−1)1, the product of at most 3 distinct integral factors. From this contradiction we deduce that such an integer t does not
exist.

5.9.6 By the Factor Theorem, we must have

0= t(−4) = (−4)3 −3a(−4)2 +40

⇐⇒ 0=−24−48a

⇐⇒ a= −
1
2

.

5.9.7 Observe that f (x)(x−1) = x5 −1 and

f (x5) = x20 + x15 + x10 + x5 +1= (x20 −1)+(x15 −1)+(x10−1)+(x5 −1)+5.

Each of the summands in parentheses is divisible by x5 −1 and, a fortiori, by f (x). The remainder sought is thus 5.

5.9.8 Put g(x) = p(x)− x, then p(6) = 16.

5.9.10 (x−2)(x+2)(x−3)

5.9.11 (x−3)(x+3)(x+5)(3x−2)

5.9.12 a= −7,b= −60

5.9.13 Let p(x) = anxn +an−1x
n−1 + · · ·+a1x+a0 with an '= 0, n≥ 1. Then

16p(x2)= (p(2x))2 =⇒ 16(anx2n+an−1x
2n−2+· · ·+a1x

2+a0)=
(

2nanxn +2n−1an−1x
n−1 + · · ·+2a1x+a0

)2

Since the coefficients on both sides of the equality must agree, we must have

16an = 22na2n =⇒ 24 = 22nan

since an '= 0. As an is an integer, we must have the following cases: n= 1,an = 4, n= 2,an = 1. Clearly we may not
have n≥ 3. Thus such polynomials are either linear or quadratic. Also, for x= 0, 16p(0) = (p(0))2 and therefore either
p(0) = 0 or p(0) = 16.
For n= 1 we seek p(x) = 4x+a. Solving

16(4x2+a) = (8x+a)2 =⇒ a= 0,

whence p(x) = 4x.
For n= 2, let p(x) = x2 +ax+b. Solving

16(x4 +ax2 +b) = (4x2 +2ax+b)2 =⇒ a= 0.

Since p(0) = 0 or p(0) = 16, we must test p(x) = x2 and p(x) = x2 +16. It is easy to see that only p(x) = x2 satisfies the
desired properties.
In conclusion, 4x and x2 are the only two such polynomials..

7.2.1 F; F; F; T; F; T

7.3.2 S5
3125 .

7.3.4 (1) a(x)≤ 27
256 achieved at x= 1

4 ,

(2) b(x) ≤ 1
16 achieved at x= 1

2 ,

(3) c(x) ≤ 108
3125 achieved at x= 2

5 , (Hint: Consider
9
4 c(x) = ( 32 x)(

3
2 x)(1− x)

3 .)

8.1.1 T; T; T; F; T; T; F; F

8.1.2 (1) −5, (2) −5, (3) − 53 , (4) −
1
2 , (5)

3
5 , (6) 6, (7)

52
15 , (8) −4 , (9) −

1
4 , (10) 1

8.1.3 (1) 25 , (2) −
5
2 , (3) −

1
2 , (4) 2, (5)

42
125

8.2.1 (1) 4
√
3, (2) 81, (3) 64 (4) 5, (5) ±2, (6) log23 2, (7) log2 3, log3 2, 0, (8) log2 7,1, (9) 0, (10) log6 2, (11) log6 2,

(12) log5 4, log5 3, (13) 81, (14)
3√5

8.3.1 1

8.3.2 F; F; T

8.3.3 (1) 14, (2) 27 , (3)
1
4 , (4)

7
3

8.3.4 31000

8.3.5 10

8.3.6 1
2

8.3.7 b
3

8.3.8 −3s3 +10s2+2s−3

8.3.9 31
32

8.3.10 (1) N−αβγ/s , (2) 0, (3) 1 (4) 2, (5) N , (6) 0, (7) 1373196

8.3.11 (1) About 107.37 km (2) 42 times.

8.3.12 2083
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8.3.13 a= 4,b= 3,c= 24

8.3.14 17
6

9.1.1 F; T; F; F; T; T

9.1.2 1. 3π
5 , quadrant II ;

2. 7π
5 , quadrant III ;

3. 7π
5 , quadrant III;

4.
8π
57
, quadrant I;

5.
9π
8
, quadrant III;

6.
6π
79
, quadrant I;

7.
6π
7
, quadrant II;

8. 1, quadrant I;

9. 2, quadrant II;

10. 3, quadrant II;

11. 4, quadrant III; (xii) 5, quadrant IV;

12. 6, quadrant IV;

13. 100−30π , quadrant IV;

14. 2π−3.14, quadrant III;

15. 2π−3.15, quadrant II

9.1.3 (i) 3π20 ,
7π
20 ,

11π
20 ,

3π
4 ,

19π
20 ; (ii)−

17π
20 , −

13π
20 , −

9π
20 , −

π
4 ,
−π
20 .

9.1.4 Yes; No.

9.2.2 F; F; T; T; F; T; F; F; T; F; T; T; F; T; F; F

9.2.3 cos t = 0.6

9.2.4 sinu=
√

.19

9.2.5 cos t =
3
√
2
5

9.2.6 sinu=−
√
3
4

9.2.7 cos 5π6 =−
√
3
2 , sin 5π6 = 1

2

9.2.8 cos 3π4 =−
√
2
2 and sin 3π4 =

√
2
2

9.2.9 sin( 31π6 ) = − 12 and cos(
31π
6 ) =−

√
3
2

9.2.10 sin( 20π3 ) =
√
3
2 and cos( 20π3 ) =− 12

9.2.11 sin( 17π4 ) =
√
2
2 and cos( 17π4 ) =

√
2
2

9.2.12 sin( −15π4 ) =
√
2
2 and cos( −15π4 ) =

√
2
2

9.2.13 sin( 202π3 ) =−
√
3
2 and cos( 202π3 ) = − 12

9.2.14 sin( 171π4 ) =
√
2
2 and cos( 171π4 ) = −

√
2
2

9.2.27 Hint: Use the Arithmetic-Geometric-Mean Inequality a+b
2 ≥

√
ab, for non-negative real numbers a,b.

9.3.1 F; F; F; F

9.4.1 F; F; T; T; F; T; T; F; T; F

9.4.2 {− 5π6 ,− π6 }

9.4.3 { π
12 + nπ

3 ,n ∈ Z}

9.4.4 {± 2π3 +2πn,2πn,n∈ Z}.

9.4.5 {(−1)n+1 π6 + nπ
3 ,n∈ Z}; {(−1)n+1 π6 + nπ

3 ,n= 295,296,297,298,299,300}

9.4.6 {(2n+1)π,n∈ Z}

9.4.7 { nπ2 , n ∈ Z}

9.4.8 /0

9.4.9 {− π
6 +nπ, 2π3 +nπ}

9.4.10 (1) {− π
3 , π3 } ; (2) {−

π
6 , π6 }; (3) No solutions in this interval; (4) All the solutions belong to this interval

{ 6
(−1)nπ+2nπ , n ∈ Z} ; (5) {− π

2 , π2 }

9.4.11 2
√
2
3

9.4.12
√
5
3

9.4.13
√
5
3

9.4.14 5−2π; 4π−10

9.5.1 F; F; F; F

9.5.2 sinx=− 23 ,cosx=
√
5
3 , tanx=− −2

√
5

5 .

9.5.3 sinx=− 2
√
5
5 ,cosx= −

√
5
5

9.5.4 cosx= −
√

1− t4, tanx=− t2√

1−t4

9.5.5 sinarcsec x=−
√

1− 1
x2

9.5.6 3
√
10
10

9.5.7 2π−6; 4π−10

9.6.3 cos(π/12) =
√
2
4 (
√
3+1), sin(π/12) =

√
2
4 (
√
3−1).

9.6.4 cotacotb−1
cota+cotb

9.6.5 1
2 cosx−

1
2 cos3x

9.6.6 1
2 cos3x+ 1

2 cos5x

9.6.7 −arcsin 4
√
15−3
20

9.6.8 arctan 1
13 .

9.6.9 π+ arctan 18

9.6.10 1
2 sin3x−

1
2 sinx

9.6.11 1
4 sin2x+ 1

4 sin4x−
1
4 sin6x

9.6.12 −(
√
2
6 +

√
3
6 )

9.6.13 x= ± π
4 +nπ, x= ± π

2 +2nπ, n ∈ Z

9.6.14 x= 0.

9.6.15 x= 0 or x= 1.

9.6.16 x=
√
17−3
4

A.3.1 Using the binomial theorem and Euler’s formula,

32cos6 2x =
(

e2ix + e−2ix
)6

=
(6
0
)

e12ix+
(6
1
)

e10ixe−2ix +
(6
2
)

e8ixe−4ix+
(6
3
)

e6ixe−6ix+
(6
4
)

e4ixe−8ix +
(6
5
)

e2ixe−10ix+
(6
6
)

e−12ix

= e12ix+6e8ix+15e4ix+20+15e−4ix+6e−8ix+ e−12ix

= (e12ix+ e−12ix)+6(e8ix+ e−8ix)+15(e4ix+ e−4ix)+20

= 2cos12x+12cos8x+30cos4x+20,

from where we deduce the result.

A.3.2 From
cos3x= 4cos3 x−3cosx, sin3x= 3sinx−4sin3 x,

we gather, upon using the double angle and the sum identities,

tan3x =
3sinx−4sin3 x
4cos3 x−3cosx

= tanx

(

3−4sin2 x
4cos2 x−3

)

= tanx

(

3−4sin2 x
1−4sin2 x

)

= tanx
(

1+
2

1−4sin2 x

)

= tanx+
2sinx

cosx−4sin2 xcosx
.

= tanx+
2sinx

cosx−2sinxsin2x

= tanx+
2sinx

cosx−2
(
cosx
2
−
cos3x
2

)

= tanx+
2sinx
cos3x

.

Finally, upon letting x=
π
9
we gather,

√
3= tan

π
3

= tan
π
9

+
2sin

π
9

cos
π
3

= tan
π
9

+4sin
π
9

,

as it was to be shewn.
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C.1.1 (1) 2,−1, 5,−7, 17; (2) 2, 1/2, 5/4, 7/8, 17/16; (3) 2, 2, 3, 7, 25; (4) 1/3, 1/5, 1/25, 1/119, 1/721; (5) 2, 9/4,
64/27, 625/256, 7776/3125

C.1.2 (1) Strictly increasing, unbounded (2) non-monotonic, unbounded (3) strictly decreasing, bounded (4) strictly
increasing, bounded (5) strictly increasing, unbounded, (6) non-monotonic, bounded, (7) strictly increasing, bounded, (8)
strictly decreasing, bounded

C.3.1 −
2
3

C.3.2 One is given that ar5 = 20 and ar9 = 320. Hence |ar2| = 5
2

C.3.3 (1) 3
50−1
2 = 358948993845926294385124, (2) 1−y

101
1−y , (3) 1+y

101
1+y , (4) 1−y

102
1−y2

C.3.4 At 2 : 00 : 59 PM (the second just before 2 : 01 PM.)

C.3.5 230

C.3.6 (1) 263 = 9223372036854775808, (2) 264−1= 18446744073709551614, (3) 1.2×1015 kg, or 1200 billion
tonnes (4) 3500 years

C.4.1 (1) 6415 , (2)
27
29 , (3)

140+99
√
2

8 , (4) 27
√
6+18

√
2

46 , (5) 3+
√
5

2 , (6) diverges, (7) 1
1+x , (8)

3
2 , (9)

x2
x−y

C.4.2 (1) 13 , (2)
2
3 , (3)

23
90 , (4)

21023
9900 , (5) 37

E.1.1 The command line follows:
> (8ˆ2 - 67)ˆ(8 - (3)*(2));

9

E.1.2 The required command line follows.
> expand((a+b+c)ˆ3-3*(a+b)*(b+c)*(c+a));

a3 +b3+ c3

E.1.3 The required command lines are
> factor((x + y)ˆ5 - xˆ5 - yˆ5);

5xy(x+ y)(y2 + xy+ x2 )

> factor((x + y)ˆ7 - xˆ7 - yˆ7);

7xy(x+ y)(y2 + xy+ x2 )2

E.1.4 Here is one possible answer
> is((aˆ2 + bˆ2)*(cˆ2+ dˆ2)= (a*c + b*d)ˆ2 +
> (a*d - b*c)ˆ2);

true

E.2.1 The command line follows:
> solve(xˆ2+abs(x-1)=5, x);

2,
1
2
−
1
2
√
17
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designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title
Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.
The Document may includeWarranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title
as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it
has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.
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H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the
Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed
in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties–for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice
of the combined work.
In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”.
You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying
of that document.

7. AGGREGATIONWITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distributionmedium, is called an “aggregate” if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the
Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided
that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original
version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of

that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by

the Free Software Foundation.
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